Skip to main content

Simple plug and play GBNF compiler for llama.cpp

Project description

GBNF Compiler (Python)

Dependency-free GBNF Compiler, plug and play for llama.cpp GBNF.

Simple yet powerful GBNF Compiler, use it like handlebars.js with better response from LLMs.

Why ?

GBNF is very useful to confine the response format from LLMs.

In most of the time, using sentence-based GBNF can produce better result than JSON-based GBNF in most LLMs without fine-tuning, gbnf-compiler provides the flexibility to construct or parse sentence / JSON / (anything you can think of) GBNF.

Getting Started

pip install gbnf-compiler

How to Use

  1. Define the LLM Response Template
  2. Create the Rule
  3. Send it out, done!
import requests
from gbnf_compiler.sentence import GBNFCompiler
from gbnf_compiler.rules import *

# Define your Prompt
prompt = "What tool will you use to calculate 2^5 ?"

# Define the LLM Response Template
# Each {{}} is a variable with a rule
template = "I choose {{tool}} because {{reason}}"

# Define the Rule - "tools" for variable ("tool")
tools = MultipleChoice('tool', ['calculator', 'web-search', 'web-browse'])

# Create the GBNF Compiler
# Single Sentence is a default Grammar Rule which ends with '.'
c = GBNFCompiler(template, { 'tool': tools, 'reason': SingleSentence() })
print(c.grammar())

# Try a dummy result
text = "I choose calculator because it is the most efficient and accurate way to calculate 2^5."
result = c.parse(text)
print(result)

"""
Result: 
{'tool': 'calculator', 'reason': 'it is the most efficient and accurate way to calculate 2^5.'}
"""

# Example: Send it out to local llama.cpp
def template(role: str, prompt: str):
    return """[INST] <<SYS>>
{role}
<</SYS>>
{prompt}
[/INST]""".format(role=role, prompt=prompt)

data_json = {
    "prompt": template("", prompt), "temperature": 0.0,
    "n_predict": 512, "top_p": 0.2, "top_k": 10,
    "stream": False, "grammar": c.grammar() }

resp = requests.post(
    url="http://127.0.0.1:9999/completion",
    headers={"Content-Type": "application/json"},
    json=data_json,
)
result = resp.json()["content"]
print(c.parse(result))

Useful Rule Examples

  1. ItemList: The Result will automatically compiled into a list of string.

    • Drawback: The LLM might keep generating more items until max tokens.
  2. Point Form: Create a Point Form Result with specific numbers.

    • This can restrict the LLM to provide limited items.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnf_compiler-0.2.1.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

gbnf_compiler-0.2.1-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file gbnf_compiler-0.2.1.tar.gz.

File metadata

  • Download URL: gbnf_compiler-0.2.1.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gbnf_compiler-0.2.1.tar.gz
Algorithm Hash digest
SHA256 4e6081ef68ceb01bace60d3846d09cf37c600f149013616bff6de2a8c816d6c6
MD5 494aa927d074b6efd84a894603970924
BLAKE2b-256 e9d9a9c94614278c1af8b45859ecc6c402bcc5f8d92238de09a182eb64017fb0

See more details on using hashes here.

File details

Details for the file gbnf_compiler-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for gbnf_compiler-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6a0e9c1e446c233a34126d15ae898450e49d71f712e331f8677ac74989b054dc
MD5 8208e2586bc2cc7285c6fefe1890caa4
BLAKE2b-256 3db1b057fc9cd937d7fa363da993ee2b0a3e8c976cb6f5f36be2427d78c7b05c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page