Skip to main content

Simple plug and play GBNF compiler for llama.cpp

Project description

GBNF Compiler (Python)

Dependency-free GBNF Compiler, plug and play for llama.cpp GBNF.

Simple yet powerful GBNF Compiler, use it like handlebars.js with better response from LLMs.

Why ?

GBNF is very useful to confine the response format from LLMs.

In most of the time, using sentence-based GBNF can produce better result than JSON-based GBNF in most LLMs without fine-tuning, gbnf-compiler provides the flexibility to construct or parse sentence / JSON / (anything you can think of) GBNF.

Getting Started

pip install gbnf-compiler

How to Use

  1. Define the LLM Response Template
  2. Create the Rule
  3. Send it out, done!
import requests
from gbnf_compiler.sentence import GBNFCompiler
from gbnf_compiler.rules import *

# Define your Prompt
prompt = "What tool will you use to calculate 2^5 ?"

# Define the LLM Response Template
# Each {{}} is a variable with a rule
template = "I choose {{tool}} because {{reason}}"

# Define the Rule - "tools" for variable ("tool")
tools = MultipleChoice('tool', ['calculator', 'web-search', 'web-browse'])

# Create the GBNF Compiler
# Single Sentence is a default Grammar Rule which ends with '.'
c = GBNFCompiler(template, { 'tool': tools, 'reason': SingleSentence() })
print(c.grammar())

# Try a dummy result
text = "I choose calculator because it is the most efficient and accurate way to calculate 2^5."
result = c.parse(text)
print(result)

"""
Result: 
{'tool': 'calculator', 'reason': 'it is the most efficient and accurate way to calculate 2^5.'}
"""

# Example: Send it out to local llama.cpp
def template(role: str, prompt: str):
    return """[INST] <<SYS>>
{role}
<</SYS>>
{prompt}
[/INST]""".format(role=role, prompt=prompt)

data_json = {
    "prompt": template("", prompt), "temperature": 0.0,
    "n_predict": 512, "top_p": 0.2, "top_k": 10,
    "stream": False, "grammar": c.grammar() }

resp = requests.post(
    url="http://127.0.0.1:9999/completion",
    headers={"Content-Type": "application/json"},
    json=data_json,
)
result = resp.json()["content"]
print(c.parse(result))

Useful Rule Examples

  1. ItemList: The Result will automatically compiled into a list of string.

    • Drawback: The LLM might keep generating more items until max tokens.
  2. Point Form: Create a Point Form Result with specific numbers.

    • This can restrict the LLM to provide limited items.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnf_compiler-0.2.3.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

gbnf_compiler-0.2.3-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file gbnf_compiler-0.2.3.tar.gz.

File metadata

  • Download URL: gbnf_compiler-0.2.3.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gbnf_compiler-0.2.3.tar.gz
Algorithm Hash digest
SHA256 7ce3090e6b90987e1eda32722fdc35270d3af6fe6c22290534a02a3c6a334420
MD5 a75ef0fdbe90e12404b7bbaf41d08e77
BLAKE2b-256 02ddd3a82cf30aec63a365456283a1f836a39c5ab8f9ab437e84fd3e9ecd922a

See more details on using hashes here.

File details

Details for the file gbnf_compiler-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for gbnf_compiler-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b92d143d5ae9652c7abd202c10052aeee220d81891e727c1d20fd6acbf228961
MD5 3953d1509abee9a7519503320f472b60
BLAKE2b-256 07387d41b48b92d420741dd3c92071afb90613bad51dadfda571151c596da4f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page