Skip to main content

Simple plug and play GBNF compiler for llama.cpp

Project description

GBNF Compiler (Python)

Dependency-free GBNF Compiler, plug and play for llama.cpp GBNF.

Simple yet powerful GBNF Compiler, use it like handlebars.js with better response from LLMs.

Why ?

GBNF is very useful to confine the response format from LLMs.

In most of the time, using sentence-based GBNF can produce better result than JSON-based GBNF in most LLMs without fine-tuning, gbnf-compiler provides the flexibility to construct or parse sentence / JSON / (anything you can think of) GBNF.

Getting Started

pip install gbnf-compiler

How to Use

  1. Define the LLM Response Template
  2. Create the Rule
  3. Send it out, done!
import requests
from gbnf_compiler.sentence import GBNFCompiler
from gbnf_compiler.rules import *

# Define your Prompt
prompt = "What tool will you use to calculate 2^5 ?"

# Define the LLM Response Template
# Each {{}} is a variable with a rule
template = "I choose {{tool}} because {{reason}}"

# Define the Rule - "tools" for variable ("tool")
tools = MultipleChoice('tool', ['calculator', 'web-search', 'web-browse'])

# Create the GBNF Compiler
# Single Sentence is a default Grammar Rule which ends with '.'
c = GBNFCompiler(template, { 'tool': tools, 'reason': SingleSentence() })
print(c.grammar())

# Try a dummy result
text = "I choose calculator because it is the most efficient and accurate way to calculate 2^5."
result = c.parse(text)
print(result)

"""
Result: 
{'tool': 'calculator', 'reason': 'it is the most efficient and accurate way to calculate 2^5.'}
"""

# Example: Send it out to local llama.cpp
def template(role: str, prompt: str):
    return """[INST] <<SYS>>
{role}
<</SYS>>
{prompt}
[/INST]""".format(role=role, prompt=prompt)

data_json = {
    "prompt": template("", prompt), "temperature": 0.0,
    "n_predict": 512, "top_p": 0.2, "top_k": 10,
    "stream": False, "grammar": c.grammar() }

resp = requests.post(
    url="http://127.0.0.1:9999/completion",
    headers={"Content-Type": "application/json"},
    json=data_json,
)
result = resp.json()["content"]
print(c.parse(result))

Useful Rule Examples

  1. ItemList: The Result will automatically compiled into a list of string.

    • Drawback: The LLM might keep generating more items until max tokens.
  2. Point Form: Create a Point Form Result with specific numbers.

    • This can restrict the LLM to provide limited items.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnf_compiler-0.3.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

gbnf_compiler-0.3.0-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file gbnf_compiler-0.3.0.tar.gz.

File metadata

  • Download URL: gbnf_compiler-0.3.0.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gbnf_compiler-0.3.0.tar.gz
Algorithm Hash digest
SHA256 519878c2a48ceea05ec96e37ca1378234ff50b28db8d6418f713aaf2070be61e
MD5 06cb59da81b919591bdde51e185a28ed
BLAKE2b-256 c73e03984820b48e292f36c16b5feaf2c72bd4d3d4c4641c9fc0d1f0a1c8188e

See more details on using hashes here.

File details

Details for the file gbnf_compiler-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for gbnf_compiler-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f5a4aaaff89a971c4ca8eb851168bdba51c7be124ef0186f018169edc7266013
MD5 c5aeb7166ad86b50697f88b0b4e2ea3c
BLAKE2b-256 6dcab31f00b1ed62e3322693f715e53d755165c1661561dc23bef2908e91cd0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page