Skip to main content

Simple plug and play GBNF compiler for llama.cpp

Project description

GBNF Compiler (Python)

Dependency-free GBNF Compiler, plug and play for llama.cpp GBNF.

Simple yet powerful GBNF Compiler, use it like handlebars.js with better response from LLMs.

Why ?

GBNF is very useful to confine the response format from LLMs.

In most of the time, using sentence-based GBNF can produce better result than JSON-based GBNF in most LLMs without fine-tuning, gbnf-compiler provides the flexibility to construct or parse sentence / JSON / (anything you can think of) GBNF.

Getting Started

pip install gbnf-compiler

How to Use

  1. Define the LLM Response Template
  2. Create the Rule
  3. Send it out, done!
import requests
from gbnf_compiler import *

# Define your Prompt
prompt = "What tool will you use to calculate 2^5 ?"

# Define the LLM Response Template
# Each {{}} is a variable with a rule
template = "I choose {{tool}} because {{reason}}"

tools = MultipleChoice('tool', ['calculator', 'web-search', 'web-browse'])
c = GBNFCompiler(template, { 'tool': tools, 'reason': SingleSentence() })
print(c.grammar())

# Try a dummy result
text = "I choose calculator because it is the most efficient and accurate way to calculate 2^5."
result = c.parse(text)
print(result)

"""
Result: 
{'tool': 'calculator', 'reason': 'it is the most efficient and accurate way to calculate 2^5.'}
"""

# Example: Send it out to local llama.cpp
def template(role: str, prompt: str):
    return """[INST] <<SYS>>
{role}
<</SYS>>
{prompt}
[/INST]""".format(role=role, prompt=prompt)

data_json = {
    "prompt": template("", prompt), "temperature": 0.0,
    "n_predict": 512, "top_p": 0.2, "top_k": 10,
    "stream": False, "grammar": c.grammar() }

resp = requests.post(
    url="http://127.0.0.1:9999/completion",
    headers={"Content-Type": "application/json"},
    json=data_json,
)
result = resp.json()["content"]
print(c.parse(result))

Useful Rule Examples

  1. ItemList: The Result will automatically compiled into a list of string.

    • Drawback: The LLM might keep generating more items until max tokens.
  2. Point Form: Create a Point Form Result with specific numbers.

    • This can restrict the LLM to provide limited items.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnf_compiler-0.3.2.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

gbnf_compiler-0.3.2-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file gbnf_compiler-0.3.2.tar.gz.

File metadata

  • Download URL: gbnf_compiler-0.3.2.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gbnf_compiler-0.3.2.tar.gz
Algorithm Hash digest
SHA256 88c50967b5e1d9a7dffee8209f624100c7b94b211001598ab9ab7fda941a6d8e
MD5 157f345a50deed000588cd75bf2df13b
BLAKE2b-256 9c482fbb8321b01925b2b32ea654e52ba841668d1079ad93c9935349932229e8

See more details on using hashes here.

File details

Details for the file gbnf_compiler-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for gbnf_compiler-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 daa2b07e86b377b0e9b93e069a8221c8523dc4bbd8822cc5300129cf1a2930e4
MD5 719e08d00eeeffcb953d6394bfa379b3
BLAKE2b-256 33d8245abc5f49e6ac496df2251b6a02bfb8368ceceacebaefbbb4c5321fb0e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page