Skip to main content

Gradient Boosted Trees for RL

Project description

Gradient Boosting Reinforcement Learning (GBRL)

GBRL is a Python-based Gradient Boosting Trees (GBT) library, similar to popular packages such as XGBoost, CatBoost, but specifically designed and optimized for reinforcement learning (RL). GBRL is implemented in C++/CUDA aimed to seamlessly integrate within popular RL libraries.

License PyPI version

Overview

GBRL adapts the power of Gradient Boosting Trees to the unique challenges of RL environments, including non-stationarity and the absence of predefined targets. The following diagram illustrates how GBRL uses gradient boosting trees in RL:

GBRL Diagram

GBRL features a shared tree-based structure for policy and value functions, significantly reducing memory and computational overhead, enabling it to tackle complex, high-dimensional RL problems.

Key Features:

  • GBT Tailored for RL: GBRL adapts the power of Gradient Boosting Trees to the unique challenges of RL environments, including non-stationarity and the absence of predefined targets.
  • Optimized Actor-Critic Architecture: GBRL features a shared tree-based structure for policy and value functions. This significantly reduces memory and computational overhead, enabling it to tackle complex, high-dimensional RL problems.
  • Hardware Acceleration: GBRL leverages CUDA for hardware-accelerated computation, ensuring efficiency and speed.
  • Seamless Integration: GBRL is designed for easy integration with popular RL libraries. We implemented GBT-based actor-critic algorithm implementations (A2C, PPO, and AWR) in stable_baselines3 GBRL_SB3.

Performance

The following results, obtained using the GBRL_SB3 repository, demonstrate the performance of PPO with GBRL compared to neural-networks across various scenarios and environments:

PPO GBRL results in stable_baselines3

Getting started

Prerequisites

  • Python 3.9 or higher
  • LLVM and OpenMP (macOS).

Installation

To install GBRL via pip, use the following command:

pip install gbrl

For further installation details and dependencies see the documentation.

Usage Example

For a detailed usage example, see tutorial.ipynb

Current Supported Features

Tree Fitting

  • Greedy (Depth-wise) tree building - (CPU/GPU)
  • Oblivious (Symmetric) tree building - (CPU/GPU)
  • L2 split score - (CPU/GPU)
  • Cosine split score - (CPU/GPU)
  • Uniform based candidate generation - (CPU/GPU)
  • Quantile based candidate generation - (CPU/GPU)
  • Supervised learning fitting / Multi-iteration fitting - (CPU/GPU)
    • MultiRMSE loss (only)
  • Categorical inputs
  • Input feature weights - (CPU/GPU)

GBT Inference

  • SGD optimizer - (CPU/GPU)
  • ADAM optimizer - (CPU only)
  • Control Variates (gradient variance reduction technique) - (CPU only)
  • Shared Tree for policy and value function - (CPU/GPU)
  • Linear and constant learning rate scheduler - (CPU/GPU only constant)
  • Support for up to two different optimizers (e.g, policy/value) - **(CPU/GPU if both are SGD)
  • SHAP value calculation

Documentation

For comprehensive documentation, visit the GBRL documentation.

Citation

@article{gbrl,
  title={Gradient Boosting Reinforcement Learning},
  author={Benjamin Fuhrer, Chen Tessler, Gal Dalal},
  year={2024},
  eprint={2407.08250},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url={https://arxiv.org/abs/2407.08250}, 
}

Licenses

Copyright © 2024, NVIDIA Corporation. All rights reserved.

This work is made available under the NVIDIA Source Code License-NC. Click here. to view a copy of this license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbrl-1.0.2.tar.gz (91.6 kB view details)

Uploaded Source

File details

Details for the file gbrl-1.0.2.tar.gz.

File metadata

  • Download URL: gbrl-1.0.2.tar.gz
  • Upload date:
  • Size: 91.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.6

File hashes

Hashes for gbrl-1.0.2.tar.gz
Algorithm Hash digest
SHA256 4d2284ffc4cca9b69e00bef3b81c6ae4892ba67e3af8f6b7c46b922f1599375b
MD5 fcbb5d9e34642304508db15b1f433d0a
BLAKE2b-256 d1b133542280a6a3a58df0e603b1edc42ffe36983cec6fb68abf34f4c7aa3abb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page