Skip to main content

A wrapper for google's existing google-cloud python package that aims to make using python inside the Google Cloud framework more intuitive.

Project description

ABOUT

gcloudy is a wrapper for Google's GCP Python package(s) that aims to make interacting with GCP and its services more intuitive, especially for new GCP users. In doing so, it adheres to pandas-like syntax for function/method calls.

The gcloudy package is not meant to be a replacement for GCP power-users, but rather an alternative for GCP users who are interested in using Python in GCP to deploy Cloud Functions and interact with certain GCP services, especially BigQuery and Google Cloud Storage.

The gcloudy package is built on top of cononical Google Python packages(s) without any alteration to Google's base code.

INSTALL, IMPORT, & INITIALIZE

  • gcloudy is installed using pip with the terminal command:

$ pip install gcloudy

  • Once installed, the BigQuery class can be imported from the main GoogleCloud module with:

from gcloudy.GoogleCloud import BigQuery

  • Then, the bq object is initialized with the following (where "gcp-project-name" is your GCP Project ID / Name):

bq = BigQuery("gcp-project-name")

  • NOTE: It is important to also import the Pandas package:

import pandas as pd

METHODS

The following section contains the methods and their usage.

----------------------------

bq.read_bigquery

- Read an existing BigQuery table into a DataFrame.

read_bigquery(bq_dataset_dot_table = None, date_cols = [], preview_top = None, to_verbose = True)

  • bq_dataset_dot_table : the "dataset-name.table-name" path of the existing BigQuery table
  • date_cols : [optional] column(s) passed inside a list that should be parsed as dates
  • preview_top : [optional] only read in the top N rows
  • to_verbose : should info be printed? defaults to True

EX:

my_table = bq.read_bigquery("my_bq_dataset.my_bq_table")
my_table = bq.read_bigquery("my_bq_dataset.my_bq_table", date_cols = ['date'])

-----------

bq.write_bigquery

- Write a DataFrame to a BigQuery table.

write_bigquery(df, bq_dataset_dot_table = None, use_schema = None, append_to_existing = False, to_verbose = True)

  • df : the DataFrame to be written to a BigQuery table
  • bq_dataset_dot_table : the "dataset-name.table-name" path of the existing BigQuery table
  • use_schema : [optional] a custom schema for the BigQuery table. NOTE: see bq.guess_schema below
  • append_to_existing : should the DataFrame be appended to an existing BigQuery table? defaults to False (create new / overwrite)
  • to_verbose : should info be printed? defaults to True

EX:

bq.write_bigquery(my_data, "my_bq_dataset.my_data")
bq.write_bigquery(my_data, "my_bq_dataset.my_data", append_to_existing = True)

-----------

bq.guess_schema

- A helper for bq.write_bigquery, passed to its use_schema arg. Creates a custom schema based on the dtypes of a DataFrame.

guess_schema(df, bq_type_default = "STRING")

  • df : the DataFrame to be written to a BigQuery table
  • bq_type_default : default BQ type passed to dtype 'object'

EX:

bq.write_bigquery(my_data, "my_bq_dataset.my_data", use_schema = bq.guess_schema(my_data))

-----------

bq.read_custom_query

- Read in a custom BigQuery SQL query into a DataFrame.

read_custom_query(custom_query, to_verbose = True)

  • custom_query : the custom BigQuery SQL query that will produce a table to be read into a DataFrame
  • to_verbose : should info be printed? defaults to True

EX:

my_custom_table = bq.read_custom_query("""
    SELECT
        date,
        sales,
        products
    FROM
        my_bq_project_id.my_bq_dataset.my_bq_table
    WHERE
        sales_month = 'June'
""")

-----------

bq.send_query

- Send a custom SQL query to BigQuery. Note, does not return anything as the process is carried out within BigQuery.

send_query(que, to_verbose = True)

  • que : the custom SQL query to be sent and carried out within BigQuery
  • to_verbose : should info be printed? defaults to True

EX:

bq.send_query("""
    CREATE TABLE my_bq_project_id.my_bq_dataset.my_new_bq_table AS 
    (
        SELECT
            date,
            sales,
            products
        FROM
            my_bq_project_id.my_bq_dataset.my_bq_table
        WHERE
            sales_month = 'June'
    )
""")

-----------

bq.read_gcs

- Read a CSV file stored within a Google Cloud Storage (GCS) Bucket into a DataFrame.

read_gcs(gsutil_uri, date_cols = None, to_verbose = True)

  • gsutil_uri : the GCS Bucket path of the existing CSV file
  • date_cols : [optional] column(s) passed inside a list that should be parsed as dates
  • to_verbose : should info be printed? defaults to True

EX:

my_table = bq.read_gcs("gs://my-bucket/my_data.csv")
my_table = bq.read_gcs("gs://my-bucket/my_data.csv", date_cols = ['date'])

-----------

bq.write_gcs

- Write a Pandas DataFrame to a Google Cloud Storage (GCS) Bucket as a CSV.

write_gcs(pandas_df, gsutil_uri, keep_index = False, to_verbose = True)

  • pandas_df : the Pandas DataFrame to be written to a Google Cloud Storage (GCS) Bucket as a CSV
  • gsutil_uri : the GCS Bucket path
  • keep_index : should the DataFrame index be written as well? defaults to False
  • to_verbose : should info be printed? defaults to True

EX:

bq.write_gcs(my_data, "gs://my-bucket/my_data.csv")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gcloudy-1.2.0.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

gcloudy-1.2.0-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file gcloudy-1.2.0.tar.gz.

File metadata

  • Download URL: gcloudy-1.2.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5

File hashes

Hashes for gcloudy-1.2.0.tar.gz
Algorithm Hash digest
SHA256 b3a2b03db9a44f4afa3b676ea7eb3a149b2ff1e6673c9387d4ccf6b091839971
MD5 a659102fbf932aacbe56214fcaf4864e
BLAKE2b-256 e4f1c1232b17ab3fbc9ce240a7e12991f9b92b7602ea64d393caea414ed824d8

See more details on using hashes here.

File details

Details for the file gcloudy-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: gcloudy-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5

File hashes

Hashes for gcloudy-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 74eec5d720702900d170f1f71be1aace1e433d4ba8099f05901635ceb0da51c8
MD5 2dec719ddf83d134f76a400f72357629
BLAKE2b-256 6d4b491ef84737c96ac5c72dbb04085d9928438a7c08e380dedc1d72f5557542

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page