A wrapper for google's existing google-cloud python package that aims to make using python inside the Google Cloud framework more intuitive.
Project description
ABOUT
gcloudy is a wrapper for Google's GCP Python package(s) that aims to make interacting with GCP and its services more intuitive, especially for new GCP users. In doing so, it adheres to pandas-like syntax for function/method calls.
The gcloudy package is not meant to be a replacement for GCP power-users, but rather an alternative for GCP users who are interested in using Python in GCP to deploy Cloud Functions and interact with certain GCP services, especially BigQuery and Google Cloud Storage.
The gcloudy package is built on top of cononical Google Python packages(s) without any alteration to Google's base code.
INSTALL, IMPORT, & INITIALIZE
-
gcloudy is installed using pip with the terminal command:
$ pip install gcloudy
-
Once installed, the BigQuery class can be imported from the main GoogleCloud module with:
from gcloudy.GoogleCloud import BigQuery
-
Then, the
bq
object is initialized with the following (where "gcp-project-name" is your GCP Project ID / Name):
bq = BigQuery("gcp-project-name")
-
NOTE: It is important to also import the Pandas package:
import pandas as pd
METHODS
The following section contains the methods and their usage.
----------------------------
bq.read_bigquery
- Read an existing BigQuery table into a DataFrame.
read_bigquery(bq_dataset_dot_table = None, date_cols = [], preview_top = None, to_verbose = True)
- bq_dataset_dot_table : the "dataset-name.table-name" path of the existing BigQuery table
- date_cols : [optional] column(s) passed inside a list that should be parsed as dates
- preview_top : [optional] only read in the top N rows
- to_verbose : should info be printed? defaults to True
EX:
my_table = bq.read_bigquery("my_bq_dataset.my_bq_table")
my_table = bq.read_bigquery("my_bq_dataset.my_bq_table", date_cols = ['date'])
-----------
bq.write_bigquery
- Write a DataFrame to a BigQuery table.
write_bigquery(df, bq_dataset_dot_table = None, use_schema = None, append_to_existing = False, to_verbose = True)
- df : the DataFrame to be written to a BigQuery table
- bq_dataset_dot_table : the "dataset-name.table-name" path of the existing BigQuery table
- use_schema : [optional] a custom schema for the BigQuery table. NOTE: see bq.guess_schema below
- append_to_existing : should the DataFrame be appended to an existing BigQuery table? defaults to False (create new / overwrite)
- to_verbose : should info be printed? defaults to True
EX:
bq.write_bigquery(my_data, "my_bq_dataset.my_data")
bq.write_bigquery(my_data, "my_bq_dataset.my_data", append_to_existing = True)
-----------
bq.guess_schema
- A helper for bq.write_bigquery, passed to its use_schema arg. Creates a custom schema based on the dtypes of a DataFrame.
guess_schema(df, bq_type_default = "STRING")
- df : the DataFrame to be written to a BigQuery table
- bq_type_default : default BQ type passed to dtype 'object'
EX:
bq.write_bigquery(my_data, "my_bq_dataset.my_data", use_schema = bq.guess_schema(my_data))
-----------
bq.read_custom_query
- Read in a custom BigQuery SQL query into a DataFrame.
read_custom_query(custom_query, to_verbose = True)
- custom_query : the custom BigQuery SQL query that will produce a table to be read into a DataFrame
- to_verbose : should info be printed? defaults to True
EX:
my_custom_table = bq.read_custom_query("""
SELECT
date,
sales,
products
FROM
my_bq_project_id.my_bq_dataset.my_bq_table
WHERE
sales_month = 'June'
""")
-----------
bq.send_query
- Send a custom SQL query to BigQuery. Note, does not return anything as the process is carried out within BigQuery.
send_query(que, to_verbose = True)
- que : the custom SQL query to be sent and carried out within BigQuery
- to_verbose : should info be printed? defaults to True
EX:
bq.send_query("""
CREATE TABLE my_bq_project_id.my_bq_dataset.my_new_bq_table AS
(
SELECT
date,
sales,
products
FROM
my_bq_project_id.my_bq_dataset.my_bq_table
WHERE
sales_month = 'June'
)
""")
-----------
bq.read_gcs
- Read a CSV file stored within a Google Cloud Storage (GCS) Bucket into a DataFrame.
read_gcs(gsutil_uri, date_cols = None, to_verbose = True)
- gsutil_uri : the GCS Bucket path of the existing CSV file
- date_cols : [optional] column(s) passed inside a list that should be parsed as dates
- to_verbose : should info be printed? defaults to True
EX:
my_table = bq.read_gcs("gs://my-bucket/my_data.csv")
my_table = bq.read_gcs("gs://my-bucket/my_data.csv", date_cols = ['date'])
-----------
bq.write_gcs
- Write a Pandas DataFrame to a Google Cloud Storage (GCS) Bucket as a CSV.
write_gcs(pandas_df, gsutil_uri, keep_index = False, to_verbose = True)
- pandas_df : the Pandas DataFrame to be written to a Google Cloud Storage (GCS) Bucket as a CSV
- gsutil_uri : the GCS Bucket path
- keep_index : should the DataFrame index be written as well? defaults to False
- to_verbose : should info be printed? defaults to True
EX:
bq.write_gcs(my_data, "gs://my-bucket/my_data.csv")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gcloudy-1.3.0.tar.gz
(6.0 kB
view details)
Built Distribution
File details
Details for the file gcloudy-1.3.0.tar.gz
.
File metadata
- Download URL: gcloudy-1.3.0.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a33f566b8a1919f1e2f67d6c2c6b0a4a8160dd377be53e9069d303a604530804 |
|
MD5 | b76e7cccccdeff65213478349589abca |
|
BLAKE2b-256 | 78e811f55ad2e801a201f9ee40104765dc142603c910140443adfadfc643a741 |
File details
Details for the file gcloudy-1.3.0-py3-none-any.whl
.
File metadata
- Download URL: gcloudy-1.3.0-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d64c3060b83ed9f8b63b1d322e14ea7f8f7e6c095f0252e7a18a18b7ea14321 |
|
MD5 | 82f6c73109708ae184c436882ae6652d |
|
BLAKE2b-256 | a1c8dc2625bd6c7d03c941e3d4c191ce2b1f2af11a2a69d78707965a1533ce87 |