Skip to main content

Compute geodesic distances

Project description

https://travis-ci.com/the-virtual-brain/tvb-gdist.svg?branch=trunk

The tvb-gdist module is a Cython interface to a C++ library (https://code.google.com/archive/p/geodesic/) for computing geodesic distance which is the length of shortest line between two vertices on a triangulated mesh in three dimensions, such that the line lies on the surface.

The algorithm is due Mitchell, Mount and Papadimitriou, 1987; the implementation is due to Danil Kirsanov and the Cython interface to Gaurav Malhotra and Stuart Knock (TVB Team).

Original library (published under MIT license): https://code.google.com/archive/p/geodesic/

We added a Python wrapped and made small fixes to the original library, to make it compatible with Cython.

To install this, either run pip install tvb-gdist or download sources from GitHub and run python setup.py install in current folder.

You can also use pip to directly install from GitHub: pip install git+https://github.com/the-virtual-brain/tvb-gdist.

Basic test could be:

python
import gdist

Python 3, Cython, and a C++ compiler are required unless the Pypi whl files are compatible with your system.

APIs

The module exposes 2 APIs.

gdist.compute_gdist(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, numpy.ndarray[numpy.int32_t, ndim=1] source_indices = None, numpy.ndarray[numpy.int32_t, ndim=1] target_indices = None, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

This is the wrapper function for computing geodesic distance between a set of sources and targets on a mesh surface.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

source_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the

source on the mesh.

target_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the

targets on the mesh.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:
numpy.ndarray((len(target_indices), ), dtype=numpy.float64): Specifying

the shortest distance to the target vertices from the nearest source vertex on the mesh. If no target_indices are provided, all vertices of the mesh are considered as targets, however, in this case, specifying max_distance will limit the targets to those vertices within max_distance of a source. If no source_indices are provided, it defaults to 0.

NOTE: This is the function to use when specifying localised stimuli and parameter variations. For efficiently using the whole mesh as sources, such as is required to represent local connectivity within the cortex, see the local_gdist_matrix() function.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> src = numpy.array([1], dtype=numpy.int32)
>>> trg = numpy.array([2], dtype=numpy.int32)
>>> import gdist
>>> gdist.compute_gdist(vertices, triangles, source_indices=src, target_indices=trg)
 array([0.2])

gdist.local_gdist_matrix(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

This is the wrapper function for computing geodesic distance from every vertex on the surface to all those within a distance max_distance of them.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:

scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N is the number of vertices, specifying the shortest distance from all vertices to all the vertices within max_distance.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> import gdist
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> gdist.local_gdist_matrix(vertices, triangles, max_distance=1.0)
 <121x121 sparse matrix of type '<type 'numpy.float64'>'
     with 6232 stored elements in Compressed Sparse Column format>

Runtime and guesstimated memory usage as a function of max_distance for the reg_13 cortical surface mesh, ie containing 2**13 vertices per hemisphere. :: [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100], # mm [19, 28, 49, 81, 125, 181, 248, 331, 422, 522], # s [ 3, 13, 30, 56, 89, 129, 177, 232, 292, 358]] # MB]

where memory is a min-guestimate given by: mem_req = nnz * 8 / 1024 / 1024.

distance_matrix_of_selected_points(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, numpy.ndarray[numpy.int32_t, ndim=1] points, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

Function for calculating pairwise geodesic distance for a set of points within a distance max_distance of them.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

points (numpy.ndarray[numpy.int32_t, ndim=1]): Indices of the points

among which the pairwise distances are to be calculated.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:
scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N

is the number of vertices, specifying the pairwise distances among the given points.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> points = numpy.array([2, 5, 10], dtype=numpy.int32)
>>> import gdist
>>> gdist.distance_matrix_of_selected_points(
        vertices, triangles, points
    )
 <121x121 sparse matrix of type '<class 'numpy.float64'>'
    with 6 stored elements in Compressed Sparse Column format>

Notes

  • The obtained matrix will be almost symmetrical due to floating point imprecision.

  • In order for the algorithm to work the mesh must not be numbered incorrectly or disconnected or of somehow degenerate.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 826421 - VirtualBrainCloud.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gdist-2.1.0.tar.gz (112.6 kB view details)

Uploaded Source

Built Distributions

gdist-2.1.0-cp311-cp311-win_amd64.whl (85.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

gdist-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (752.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp311-cp311-macosx_11_0_arm64.whl (89.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gdist-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl (95.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gdist-2.1.0-cp310-cp310-win_amd64.whl (84.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

gdist-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (739.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp310-cp310-macosx_11_0_arm64.whl (89.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gdist-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl (94.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gdist-2.1.0-cp39-cp39-win_amd64.whl (86.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

gdist-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (744.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp39-cp39-macosx_11_0_arm64.whl (90.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gdist-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl (95.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gdist-2.1.0-cp38-cp38-win_amd64.whl (85.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

gdist-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (743.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp38-cp38-macosx_11_0_arm64.whl (89.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gdist-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl (95.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gdist-2.1.0-cp37-cp37m-win_amd64.whl (85.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

gdist-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (728.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (95.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

gdist-2.1.0-cp36-cp36m-win_amd64.whl (89.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

gdist-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (726.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

gdist-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (95.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file gdist-2.1.0.tar.gz.

File metadata

  • Download URL: gdist-2.1.0.tar.gz
  • Upload date:
  • Size: 112.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0.tar.gz
Algorithm Hash digest
SHA256 f8c6b25f9ab7c626cd683c23c7886f4a5f5a4aae2e1d3931ae865157d4e33fe8
MD5 a31247616a6968b7b0846335c9e2474b
BLAKE2b-256 2b913e56e4c14b99dffcf08bf4ff7afaff31fc3214d033379bb0f6ab055bdad1

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 85.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0198e7410a91461052d747ac6c5c26515a987789ec9808c938fa26790616ba3b
MD5 8aa395dc29e7c9b52bc93edf0a8d95df
BLAKE2b-256 9c283e03a056b16711aa4bb14c9c81f41863c800b14b121b0aaa1184fa9ca472

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9271466f4fab9881c57f7825d66eba069ee8df32764021474e8348667abb49b7
MD5 e202d405ee3920e40137c4965abae9fa
BLAKE2b-256 f2c244edddf8fae4bcd21ed42c95a53b75fb06062c77b0358e078acb2edba344

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29d7da6d285b6980cc1c30c2cc9263c03c4bdfe158b929f33ddd7993219042b3
MD5 53d16ce4ad8f042e630f73f54333b704
BLAKE2b-256 eb3ba80040dd83b56b6b6e6b27b7ac6e51fe0acc85141eb2bf2c366e7bf60b5d

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f08396d8b0dd89886dcf8b75f9eeb5390dac27efa7703ba1a1b724754951afa6
MD5 6d035df0596401c26af0ca045a471e16
BLAKE2b-256 809f25fdfaf0ad42bff87cbf21d0d7cd24f79563a0afbabdcde01e2b15b49e9b

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 84.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8154e208b4a30dff370fdcfda11c133748d229390f54d1f114b0c7c54431a255
MD5 f76efd84f7e4a762c8d3ed02c8d90a04
BLAKE2b-256 c490a0a80659c8786704fadb50e1e4b3d91047a5ff224b9f70fb6ee224fe4a48

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91b3280f6d1fdef415232496b30397a6c9dcc8d472806bffe610a26313ce03e0
MD5 0b9566b9d2d46e0390c2cdc281e689e8
BLAKE2b-256 469ef4c4cb32e2fcfa1e8b7b8090458e0e8083eac5e59bb7fc6bde583d674b32

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ace46774ea8fa3d75a0d775951a4c3bacd3da69b06f9f17d805474e95f71b1b0
MD5 ca040e5a322ce35dd9a9018e50b33647
BLAKE2b-256 168509bed02227a00e6ea597370a922383ea4a97e3ce8abfe8fbc519e02525cd

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff7551ee9b5c7716fc077068e2b52890ac9cf3ef249582acde895f7119d4040f
MD5 8e389117890a1f390c11102b4001b804
BLAKE2b-256 c52c3b3a46c497513d543f1869456c2b2704d3d7d0261bec835886e7c1b54176

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 86.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c28ce89c4b9c8d8e987027bb3a8add9877d19a8ede0bf7167d14d2fd023d85a2
MD5 85077ac8ed145c4c399d44f1450b3c7d
BLAKE2b-256 6d13d0de672a84e8530fc8e8539c6f6d4c23a7e978fb26fd99e4fb932f0de29c

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b075bfbef6781c80c256184b9b61c5d8ac17384461ef43e1cf3c2c05a20bb99
MD5 a002f5615e5dd175e85a9a2247e8d66c
BLAKE2b-256 c6ecd4cc8a5715504e7bf0ebc5dad371cfa36c41edec6646410ef41f1481c49e

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 599a14363ec9570d53eb17d9e0b3a443fea774a0c3044161727cc732725dfd27
MD5 d6760eea96672d6df0d10e2795c50446
BLAKE2b-256 1874a1ef0a52305706d8bf26fd6ace9a0bc3ebf1717162bb1f216c2fa7166482

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56af0eb5828fd23d28c77c4d09e6357fe024720b3dcea45ecf3dd918fc3c81c8
MD5 293e721a8b7ebc8b52477fb635aa6f9a
BLAKE2b-256 64bdfd2c0877e4aed96c4ab2fdaa09778aaaf21671b6f45ee51830eb6ce06d6d

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 85.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 08a847153353a296188bd01946242cd0e0eabe35594db1a8cdef8f9258b98162
MD5 7fb62b1f6102888b86aed12df75380f3
BLAKE2b-256 151d8f13960a079c043601524035dbb3bb1beee8d73c338a986611d8ed1ee8e7

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54262561068f3d28c76f21de850e8adb18751aac066ff86e671da12262350286
MD5 b3695394f10735314232acc4ce83723c
BLAKE2b-256 81b8b3ff607c6148594cd6150629ae98bc5e79c87aaf236154f994593da39469

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a40a2fd8335e981c12debe2091775b54306300a415c1f253dff3fb3eb2990ba
MD5 0f3e4c8b6ab678b4ea6bd38a92441791
BLAKE2b-256 b6ed3d96b447dd5bb61357eb38031d86a369b0532969d7a83050e52bf8787496

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d30b4b5e50a7d191bdc5fa9b7701684a18b1a0075f6b649daa8342d36efa7104
MD5 e6538e4267eb1d7c8839b5f0bb332415
BLAKE2b-256 b8a3dfd97b09630521a872b750d5e369b09b5af00603cdcc1b36c3f153c31de1

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 85.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1131123f24964ee542806cb6dbb56744c5aa9ba041cd9ee1de255ecddb6cf96a
MD5 9d0f7748fa65a0b62a28b7be9729b3fd
BLAKE2b-256 49fbb2fc387c70b92b9ef1f60feb7117c5cbaca84edb0acc034f7357b0bde589

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70723f620fe9d339075b8dce1662b48a8bb9c47df84d7b6850072ff0179af128
MD5 ad004fb149b7a1fce0f581b862678693
BLAKE2b-256 3780745e9a5edfdde6900e207f5292239ed42f45f41c028e0334df8df80b690b

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc3c0ca7168be4ec7256db96a123bc4b64b00fa0f1fc70bf87bbef44cd344b3e
MD5 74bb6a77f3c6f7402be1b72936fffad4
BLAKE2b-256 6a6c8db4560b51c3748f8597c684b266c9426e7a0c8d7856d213f7fe1ccde760

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gdist-2.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gdist-2.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a195568f72ff859b25c900c7f00d92f18bd063bf13948e8ad8287061b89c72cd
MD5 eaa19f36736557d94651d5fbe2adec5e
BLAKE2b-256 3268e251bb982ea2ec07c38af8844901868f7d92b1233fa8eacc2408fd563b28

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfe8d8ff3f8ef7c3862300f24cceb348b7cd1fb71b6ed4011a3d17ecd37b3704
MD5 df1e3e569b9867a1523118375cda9528
BLAKE2b-256 3cdba47f5818f08b5bff63e0b24411dd1d81a8b2d85432e0bb3f0983a734188f

See more details on using hashes here.

File details

Details for the file gdist-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gdist-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ad481522be56672c2461d215985f25cf471a192f2723269790241e0d4e0beab
MD5 822ba38c016b3414f51f964f729156de
BLAKE2b-256 033bf115741ade07fccf3bb58737206db58542906d32e8194db42908c8a18c01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page