Skip to main content

An automated production tool provided by the GeneDock team.

Project description

gdflowon

包含使用DAG描述的自动流模型渲染工具、样品信息表的定义等,可通过简单的配置结合样品信息表中的 subprojectsamplelane等模型快速地描述分析流程。

渲染DAG及绑定顶点活动的资源

以子项目为单位,通过配置中的顶点模板映射DAG的各个顶点。首先需要定义顶点的模板,顶点模板包含以下元素:

<顶点类型>:
    scope: <资源类型>  # 指定该顶点类型使用到的资源类型:`subproject` | `sample` | `lane`
    dependencies: <依赖到的顶点类型>

以WGS分析流程为例,人工操作需要完成以下步骤:

  1. 按Lane上传,无依赖项
  2. 按Lane比对,依赖绑定的资源(Lane)上传完成
  3. 按样本WGS分析,依赖绑定的资源(样本下所有Lane)全部比对完成
  4. 按整个子项目合并处理报告,依赖绑定的资源(子项目下所有的样本)全部分析完成
  5. 按整个子项目下载结果,依赖绑定的资源(子项目)报告处理完成
upload:
    scope: lane
    dependencies: null

mapping:
    scope: lane
    dependencies: upload

wgs:
    scope: sample
    dependencies: mapping

report:
    scope: subproject
    dependencies: wgs

download:
    scope: subproject
    dependencies: report

样品信息表 <-> DAG的映射方式如下:

@startuml 通过子项目映射到DAG
!includeurl https://raw.githubusercontent.com/xuanye/plantuml-style-c4/master/core.puml
start
:子项目/
split
    :子项目下的Lane列表/
    :映射|
    :顶点列表(upload)/
split again
    :子项目下的Lane列表/
    :映射|
    :顶点列表(mapping)/
split again
    :子项目下的样品列表/
    :映射|
    :顶点列表(wgs)/
split again
    :子项目/
    :映射|
    :顶点(report)/
split again
    :子项目/
    :映射|
    :顶点(download)/
end split

:处理依赖关系,生成DAG;
stop
@enduml

使用方式

from gdflowon import dag

# flow_config: 使用DAG描述的流程模板
# subproject: 样品信息表
graph = dag.subproject_2_dag(subproject, flow_config)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gdmetro-flowon-0.1.3.tar.gz (15.9 kB view hashes)

Uploaded Source

Built Distribution

gdmetro_flowon-0.1.3-py2.py3-none-any.whl (16.0 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page