Skip to main content

GDMO native classes for standardized interaction with data objects within Azure Databricks. Contains TimeSeriesForecasting, APIRequest, Landing, and Delta functions.

Project description

gdmo

PyPI Tests Changelog License

GDMO native classes for standardized interaction with data objects within Azure Databricks

This custom library allows our engineering team to use standardized packages that strip away a load of administrative and repetitive tasks from their daily object interactions. The current classes supported (V0.1.0) are:

Installation

Install this library using pip:

pip install gdmo

Usage

Forecast - Forecast

Standardized way of forecasting a dataset. Input a dataframe with a Series, a Time, and a Value column, and see the function automatically select the right forecasting model and generate an output.

Example usage:

from gdmo import TimeSeriesForecast
forecaster = TimeSeriesForecast(spark, 'Invoiced Revenue')\
                    .set_columns('InvoiceDate', 'ProductCategory', 'RevenueUSD')\
                    .set_forecast_length(forecast_length)\
                    .set_last_data_point(lastdatamonth)\
                    .set_input(df)\
                    .set_growth_cap(0.02)\
                    .set_use_cap_growth(True)\
                    .set_modelselection_breakpoints(12, 24)\
                    .set_track_outcome(False)\
                    .build_forecast()

forecaster.inspect_forecast()

API - APIRequest

Class to perform a standard API Request using the request library, which allows a user to just add their endpoint / authentication / method data, and get the data returned without the need of writing error handling or need to understand how to properly build a request.

Example usage:

request = APIRequest(uri)\
            .set_content_type('application/json') \
            .set_header('bearer xxxxx') \
            .set_method('GET') \
            .set_parameters({"Month": "2024-01-01"})\
            .make_request()

response = request.get_json_response()
display(response)

Tables - Landing

A class for landing API ingests and other data into Azure Data Lake Storage (ADLS). Currently can ingest Sharepoint data and JSON (API-sourced) data.

Example usage to ingest files from Sharepoint folder:

environment     = 'xxxxx' #Databricks catalog

Sharepointsite  = 'xxxxx'
UserName        = 'xxxxx'
Password        = 'xxxxx'
Client_ID       = 'xxxxx'
adls_temp       = 'xxxxx'

sharepoint = Landing(spark, dbutils, database="xxx", bronze_table="xxx", catalog=environment, container='xxx')\
                  .set_tmp_file_location(adls_temp)\
                  .set_sharepoint_location(Sharepointsite)\
                  .set_sharepoint_auth(UserName, Password, Client_ID)\
                  .set_auto_archive(False)\
                  .get_all_sharepoint_files()

Example usage to ingest JSON content from an API:

#Sample API request using the APIRequest class
uri = 'xxxxx'
request  = APIRequest(uri).make_request()
response = request.get_json_response()

#Initiate the class, tell it where the bronze table is located, load configuration data for that table (required for delta merge), add the JSON to the landing area in ADLS, then put the landed data into a bronze delta table in the databricks catalog. 
landing = Landing(spark, dbutils, database="xxx", bronze_table="xxx", target_folder=location, filename=filename, catalog=environment, container='xxx')\    
                .set_bronze(bronze)\                                
                .set_config(config)\
                .put_json_content(response)\
                .put_bronze()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gdmo-0.0.21.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

gdmo-0.0.21-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file gdmo-0.0.21.tar.gz.

File metadata

  • Download URL: gdmo-0.0.21.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.21.tar.gz
Algorithm Hash digest
SHA256 5aa58443a4f139aab4108eaa1779ada179e6306cf8d1436b1de60dcec83d0806
MD5 08b7f33884510be9c74f3b9477c1670c
BLAKE2b-256 de1f76ed25894e3824fca2cd5d7efe0b59b48cb9d2d947cc74bafda7dc147aa6

See more details on using hashes here.

File details

Details for the file gdmo-0.0.21-py3-none-any.whl.

File metadata

  • Download URL: gdmo-0.0.21-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.21-py3-none-any.whl
Algorithm Hash digest
SHA256 fef78bc2e14fabbbccb6a3efdb3d2d86883a8bfb02fc54fc1fae64a129000886
MD5 5ac1a267ec0dae9e035eec9dae526691
BLAKE2b-256 80851dd4acfa899eabecfcdf5b9c49548c5933b5f882f548b01d5f88afec3bbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page