Skip to main content

GDMO native classes for standardized interaction with data objects within Azure Databricks. Contains TimeSeriesForecasting, APIRequest, Landing, and Delta functions.

Project description

gdmo

PyPI Tests Changelog License

GDMO native classes for standardized interaction with data objects within Azure Databricks

This custom library allows our engineering team to use standardized packages that strip away a load of administrative and repetitive tasks from their daily object interactions. The current classes supported (V0.1.0) are:

Installation

Install this library using pip:

pip install gdmo

Usage

Forecast - Forecast

Standardized way of forecasting a dataset. Input a dataframe with a Series, a Time, and a Value column, and see the function automatically select the right forecasting model and generate an output.

Example usage:

from gdmo import TimeSeriesForecast
forecaster = TimeSeriesForecast(spark, 'Invoiced Revenue')\
                    .set_columns('InvoiceDate', 'ProductCategory', 'RevenueUSD')\
                    .set_forecast_length(forecast_length)\
                    .set_last_data_point(lastdatamonth)\
                    .set_input(df)\
                    .set_growth_cap(0.02)\
                    .set_use_cap_growth(True)\
                    .set_modelselection_breakpoints(12, 24)\
                    .set_track_outcome(False)\
                    .build_forecast()

forecaster.inspect_forecast()

API - APIRequest

Class to perform a standard API Request using the request library, which allows a user to just add their endpoint / authentication / method data, and get the data returned without the need of writing error handling or need to understand how to properly build a request.

Example usage:

request = APIRequest(uri)\
            .set_content_type('application/json') \
            .set_header('bearer xxxxx') \
            .set_method('GET') \
            .set_parameters({"Month": "2024-01-01"})\
            .make_request()

response = request.get_json_response()
display(response)

Tables - Landing

A class for landing API ingests and other data into Azure Data Lake Storage (ADLS). Currently can ingest Sharepoint data and JSON (API-sourced) data.

Example usage to ingest files from Sharepoint folder:

environment     = 'xxxxx' #Databricks catalog

Sharepointsite  = 'xxxxx'
UserName        = 'xxxxx'
Password        = 'xxxxx'
Client_ID       = 'xxxxx'
adls_temp       = 'xxxxx'

sharepoint = Landing(spark, dbutils, database="xxx", bronze_table="xxx", catalog=environment, container='xxx')\
                  .set_tmp_file_location(adls_temp)\
                  .set_sharepoint_location(Sharepointsite)\
                  .set_sharepoint_auth(UserName, Password, Client_ID)\
                  .set_auto_archive(False)\
                  .get_all_sharepoint_files()

Example usage to ingest JSON content from an API:

#Sample API request using the APIRequest class
uri = 'xxxxx'
request  = APIRequest(uri).make_request()
response = request.get_json_response()

#Initiate the class, tell it where the bronze table is located, load configuration data for that table (required for delta merge), add the JSON to the landing area in ADLS, then put the landed data into a bronze delta table in the databricks catalog. 
landing = Landing(spark, dbutils, database="xxx", bronze_table="xxx", target_folder=location, filename=filename, catalog=environment, container='xxx')\    
                .set_bronze(bronze)\                                
                .set_config(config)\
                .put_json_content(response)\
                .put_bronze()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gdmo-0.0.26.tar.gz (34.5 kB view details)

Uploaded Source

Built Distribution

gdmo-0.0.26-py3-none-any.whl (33.7 kB view details)

Uploaded Python 3

File details

Details for the file gdmo-0.0.26.tar.gz.

File metadata

  • Download URL: gdmo-0.0.26.tar.gz
  • Upload date:
  • Size: 34.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.26.tar.gz
Algorithm Hash digest
SHA256 ab7731852f9ed891897a173f4a0c201d6948a769708ac1e4b4691d16804a65de
MD5 d602ecae0005979c1ea0b4b97f5547b0
BLAKE2b-256 f702bf823117aa76662b21ca9137710d7ec5427d61773642c64fa5250ef532b4

See more details on using hashes here.

File details

Details for the file gdmo-0.0.26-py3-none-any.whl.

File metadata

  • Download URL: gdmo-0.0.26-py3-none-any.whl
  • Upload date:
  • Size: 33.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.26-py3-none-any.whl
Algorithm Hash digest
SHA256 dcaddc17b84372ddfe13c1f4426b9b78238ac1f5373cc3b2c56124d87235c3e8
MD5 1473082e186bcfe50d532a7c28271caf
BLAKE2b-256 b3d57b62412c6a08e750f49e838a01ce99fe9c8d6ae5c1bf10be582a9e83e8a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page