Skip to main content

GDMO native classes for standardized interaction with data objects within Azure Databricks. Contains TimeSeriesForecasting, APIRequest, Landing, Delta, and DBx functions.

Project description

gdmo

PyPI Tests Changelog License

GDMO native classes for standardized interaction with data objects within Azure Databricks

This custom library allows our engineering team to use standardized packages that strip away a load of administrative and repetitive tasks from their daily object interactions. The current classes supported (V0.1.0) are:

Installation

Install this library using pip:

pip install gdmo

Usage

Forecast - Forecast

Standardized way of forecasting a dataset. Input a dataframe with a Series, a Time, and a Value column, and see the function automatically select the right forecasting model and generate an output.

Example usage:

from gdmo import TimeSeriesForecast
forecaster = TimeSeriesForecast(spark, 'Invoiced Revenue')\
                    .set_columns('InvoiceDate', 'ProductCategory', 'RevenueUSD')\
                    .set_forecast_length(forecast_length)\
                    .set_last_data_point(lastdatamonth)\
                    .set_input(df)\
                    .set_growth_cap(0.02)\
                    .set_use_cap_growth(True)\
                    .set_modelselection_breakpoints(12, 24)\
                    .set_track_outcome(False)\
                    .build_forecast()

forecaster.inspect_forecast()

API - APIRequest

Class to perform a standard API Request using the request library, which allows a user to just add their endpoint / authentication / method data, and get the data returned without the need of writing error handling or need to understand how to properly build a request.

Example usage:

request = APIRequest(uri)\
            .set_content_type('application/json') \
            .set_header('bearer xxxxx') \
            .set_method('GET') \
            .set_parameters({"Month": "2024-01-01"})\
            .make_request()

response = request.get_json_response()
display(response)

Tables - Landing

A class for landing API ingests and other data into Azure Data Lake Storage (ADLS). Currently can ingest Sharepoint (excel) data and JSON (API-sourced) data.

Example usage to ingest files from Sharepoint folder:

environment     = 'xxxxx' #Databricks catalog

Sharepointsite  = 'xxxxx'
UserName        = 'xxxxx'
Password        = 'xxxxx'
Client_ID       = 'xxxxx'
adls_temp       = 'xxxxx'

sharepoint = Landing(spark, dbutils, database="xxx", bronze_table="xxx", catalog=environment, container='xxx')\
                  .set_tmp_file_location(adls_temp)\
                  .set_sharepoint_location(Sharepointsite)\
                  .set_sharepoint_auth(UserName, Password, Client_ID)\
                  .set_auto_archive(False)\
                  .get_all_sharepoint_files()

Example usage to ingest JSON content from an API:

#Sample API request using the APIRequest class
uri = 'xxxxx'
request  = APIRequest(uri).make_request()
response = request.get_json_response()

#Initiate the class, tell it where the bronze table is located, load configuration data for that table (required for delta merge), add the JSON to the landing area in ADLS, then put the landed data into a bronze delta table in the databricks catalog. 
landing = Landing(spark, dbutils, database="xxx", bronze_table="xxx", target_folder=location, filename=filename, catalog=environment, container='xxx')\    
                .set_bronze(bronze)\                                
                .set_config(config)\
                .put_json_content(response)\
                .put_bronze()

Dbx - DbxWidget

A class for generating and reading a databricks notebook widget. The widget supports all four widget types (['text', 'dropdown', 'multiselect', 'combobox']) and allows for different response datatypes to be set ['text', 'int', 'double', 'float','date']

The default databricks method:

dbutils.widgets.dropdown("colour", "Red", "Enter Colour", ["Red", "Blue", "Yellow"])
colour = dbutils.widgets.read("colour")

Using this function all the user needs to write is:

colour = DbxWidget(dbutils, "colour", 'dropdown', "Red", choices=["Red", "Blue", "Yellow"])

A simple text value parameter:

reloadData = DbxWidget(dbutils, "fullReload", 'N')

A simple date value parameter:

reloadData = DbxWidget(dbutils, "startDate", 'N', return='date')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gdmo-0.0.42.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

gdmo-0.0.42-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file gdmo-0.0.42.tar.gz.

File metadata

  • Download URL: gdmo-0.0.42.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.42.tar.gz
Algorithm Hash digest
SHA256 1ede4898db51f8975d5f42280c2796204a041a4cc3078963822e3c964995be10
MD5 2721a845a0607711e7aeabfb929489c0
BLAKE2b-256 5c9029f54af081cf5ba588e79f3d506895c06e398efef37724d829203a27abdb

See more details on using hashes here.

File details

Details for the file gdmo-0.0.42-py3-none-any.whl.

File metadata

  • Download URL: gdmo-0.0.42-py3-none-any.whl
  • Upload date:
  • Size: 36.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for gdmo-0.0.42-py3-none-any.whl
Algorithm Hash digest
SHA256 dd53e1390f146126be30826941f26d1db9300943c428b9f05530f879d819e848
MD5 59c15e153f1ede189ba2aafc425a4d01
BLAKE2b-256 c3540eef1f605d262a2611a3f4f272c395b8ea42c5f68820edbe9811450cacf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page