This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

gdprox, proximal gradient-descent algorithms

Implements the proximal gradient-descent algorithm for composite objective functions, i.e. functions of the form f(x) + g(x), where f is a smooth function and g is a possibly non-smooth function for which the proximal operator is known.

The main function in this package is gdprox.fmin_cgprox. This function follows a similar interface than the functions in scipy.optimize. The definition of this function is:

def fmin_cgprox(f, fprime, g_prox, x0, rtol=1e-6,
                maxiter=1000, verbose=0, default_step_size=1.):
    """
    proximal gradient-descent solver for optimization problems of the form

                       minimize_x f(x) + g(x)

    where f is a smooth function and g is a (possibly non-smooth)
    function for which the proximal operator is known.

    Parameters
    ----------
    f : callable
        f(x) returns the value of f at x.

    f_prime : callable
        f_prime(x) returns the gradient of f.

    g_prox : callable of the form g_prox(x, alpha)
        g_prox(x, alpha) returns the proximal operator of g at x
        with parameter alpha.

    x0 : array-like
        Initial guess

    maxiter : int
        Maximum number of iterations.

    verbose : int
        Verbosity level, from 0 (no output) to 2 (output on each iteration)

    default_step_size : float
        Starting value for the line-search procedure.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a
        ``scipy.optimize.OptimizeResult`` object. Important attributes are:
        ``x`` the solution array, ``success`` a Boolean flag indicating if
        the optimizer exited successfully and ``message`` which describes
        the cause of the termination. See `scipy.optimize.OptimizeResult`
        for a description of other attributes.
    """
Release History

Release History

0.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
gdprox-0.3.tar.gz (2.8 kB) Copy SHA256 Checksum SHA256 Source Nov 27, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting