Python package to translate between gdx (GAMS data) and pandas.
Project description
gdx-pandas: Python package to translate between gdx (GAMS data) and pandas.
USE
There are two main ways to use gdxpds. The first use case is the one that was
initially supported: direct conversion between GDX files on disk and pandas
DataFrames or a csv version thereof. The Version 1.0.0 rewrite intoduces a
second style of use, that is, interfacing with GDX files and symbols via the
`gdxpds.gdx.GdxFile` and `gdxpds.gdx.GdxSymbol` classes.
USE -- Direct Conversion
The two primary points of reference for the direct conversion utilities are GDX
files on disk and python dicts of {symbol_name: pandas.DataFrame}, where
each pandas.DataFrame contains data for a single set, parameter, equation, or
variable. For sets and parameters, the last column of the DataFrame is assumed to
contain the value of the element, which for sets should be `True`, and for
parameters should be a `float` (or one of the `gdxpds.gdx.NUMPY_SPECIAL_VALUES`).
Equations and variables have additional 'value' columns, in particular a level,
a marginal value, a lower bound, an upper bound, and a scale, as enumerated in
`gdxpds.gdx.GamsValueType`. These values are all assumed to be found in the last
five columns of the DataFrame, also see `gdxpds.gdx.GAMS_VALUE_COLS_MAP`.
The basic interface to convert from GDX to DataFrames is:
import gdxpds
gdx_file = 'C:\path_to_my_gdx\data.gdx'
dataframes = gdxpds.to_dataframes(gdx_file)
for symbol_name, df in dataframes.items():
print("Doing work with {}.".format(symbol_name))
And vice-versa:
import gdxpds
# assume we have a DataFrame df with last column 'value'
data_ready_for_GAMS = { 'symbol_name': df }
gdx_file = 'C:\path_to_my_output_gdx\data_to_send_to_gams.gdx'
gdx = gdxpds.to_gdx(data_ready_for_GAMS, gdx_file)
Note that providing a gdx_file is optional, and the returned gdx is an object of
type `gdxpds.gdx.GdxFile`.
The package also includes command line utilities for converting between GDX and
CSV: gdx_to_csv.py and csv_to_gdx.py.
USE -- Backend Classes
The basic functionalities described above can also be achieved with direct use
of the backend classes now available in `gdxpds.gdx`. To duplicate the GDX read
functionality shown above one would write:
import gdxpds
gdx_file = 'C:\path_to_my_gdx\data.gdx'
with gdxpds.gdx.GdxFile(lazy_load=False) as f:
f.read(gdx_file)
for symbol in f:
symbol_name = symbol.name
df = symbol.dataframe
print("Doing work with {}:\n{}".format(symbol_name,df.head()))
The backend especially gives more control over creating new data in GDX format.
For example:
import gdxpds
out_file = 'my_new_gdx_data.gdx'
with gdxpds.gdx.GdxFile() as gdx:
# Create a new set with one dimension
gdx.append(gdxpds.gdx.GdxSymbol('my_set',gdxpds.gdx.GamsDataType.Set,dims=['u']))
data = pds.DataFrame([['u' + str(i)] for i in range(1,11)])
data['Value'] = True
gdx[-1].dataframe = data
# Create a new parameter with one dimension
gdx.append(gdxpds.gdx.GdxSymbol('my_parameter',gdxpds.gdx.GamsDataType.Parameter,dims=['u']))
data = pds.DataFrame([['u' + str(i), i*100] for i in range(1,11)],
columns=(gdx[-1].dims + gdx[-1].value_col_names))
gdx[-1].dataframe = data
gdx.write(out_file)
DEPENDENCIES
- Python 2.6 or higher 2.X; Python 3.4 or higher 3.X
- pandas (In general you will want the SciPy stack. Anaconda comes with it, or see [my notes for Windows](http://elainethale.wordpress.com/programming-notes/python-environment-set-up/).)
- For Python versions < 3.4, enum34. Also **uninstall the enum package** if it is installed.
- psutil (optional--for monitoring memory use)
- pytest (optional--for running tests)
- GAMS Python bindings
- See GAMS/win64/XX.X/apifiles/readme.txt on Windows,
GAMS/gamsXX.X_osx_x64_64_sfx/apifiles/readme.txt on Mac, or
/opt/gams/gamsXX.X_linux_x64_64_sfx/apifiles/readme.txt on Linux
- Run the following for the correct version of the Python bindings
python setup.py install
or
python setup.py build --build-base=/path/to/somwhere/you/have/write/access install
with the latter being for the case when you can install packages into
Python but don't have GAMS directory write access.
- .../apifiles/Python/api/setup.py works for Python 2.7
- For other versions of Python, especially 3.X, use
.../apifiles/Python/api_XX/setup.py. For Python 3.X in particular you will
need GAMS version >= 24.5.1 (Python 3.4, Windows and Linux),
24.7.4 (Python 3.4, Mac OS X), or >= 24.8.4 (Python 3.6)
TESTING
After installation, you can test the package using pytest:
pytest --pyargs gdxpds
If the tests fail due to permission IOErrors, apply `chmod g+x` and `chmod a+x`
to the `gdx-pandas/gdxpds/test` folder.
USE
There are two main ways to use gdxpds. The first use case is the one that was
initially supported: direct conversion between GDX files on disk and pandas
DataFrames or a csv version thereof. The Version 1.0.0 rewrite intoduces a
second style of use, that is, interfacing with GDX files and symbols via the
`gdxpds.gdx.GdxFile` and `gdxpds.gdx.GdxSymbol` classes.
USE -- Direct Conversion
The two primary points of reference for the direct conversion utilities are GDX
files on disk and python dicts of {symbol_name: pandas.DataFrame}, where
each pandas.DataFrame contains data for a single set, parameter, equation, or
variable. For sets and parameters, the last column of the DataFrame is assumed to
contain the value of the element, which for sets should be `True`, and for
parameters should be a `float` (or one of the `gdxpds.gdx.NUMPY_SPECIAL_VALUES`).
Equations and variables have additional 'value' columns, in particular a level,
a marginal value, a lower bound, an upper bound, and a scale, as enumerated in
`gdxpds.gdx.GamsValueType`. These values are all assumed to be found in the last
five columns of the DataFrame, also see `gdxpds.gdx.GAMS_VALUE_COLS_MAP`.
The basic interface to convert from GDX to DataFrames is:
import gdxpds
gdx_file = 'C:\path_to_my_gdx\data.gdx'
dataframes = gdxpds.to_dataframes(gdx_file)
for symbol_name, df in dataframes.items():
print("Doing work with {}.".format(symbol_name))
And vice-versa:
import gdxpds
# assume we have a DataFrame df with last column 'value'
data_ready_for_GAMS = { 'symbol_name': df }
gdx_file = 'C:\path_to_my_output_gdx\data_to_send_to_gams.gdx'
gdx = gdxpds.to_gdx(data_ready_for_GAMS, gdx_file)
Note that providing a gdx_file is optional, and the returned gdx is an object of
type `gdxpds.gdx.GdxFile`.
The package also includes command line utilities for converting between GDX and
CSV: gdx_to_csv.py and csv_to_gdx.py.
USE -- Backend Classes
The basic functionalities described above can also be achieved with direct use
of the backend classes now available in `gdxpds.gdx`. To duplicate the GDX read
functionality shown above one would write:
import gdxpds
gdx_file = 'C:\path_to_my_gdx\data.gdx'
with gdxpds.gdx.GdxFile(lazy_load=False) as f:
f.read(gdx_file)
for symbol in f:
symbol_name = symbol.name
df = symbol.dataframe
print("Doing work with {}:\n{}".format(symbol_name,df.head()))
The backend especially gives more control over creating new data in GDX format.
For example:
import gdxpds
out_file = 'my_new_gdx_data.gdx'
with gdxpds.gdx.GdxFile() as gdx:
# Create a new set with one dimension
gdx.append(gdxpds.gdx.GdxSymbol('my_set',gdxpds.gdx.GamsDataType.Set,dims=['u']))
data = pds.DataFrame([['u' + str(i)] for i in range(1,11)])
data['Value'] = True
gdx[-1].dataframe = data
# Create a new parameter with one dimension
gdx.append(gdxpds.gdx.GdxSymbol('my_parameter',gdxpds.gdx.GamsDataType.Parameter,dims=['u']))
data = pds.DataFrame([['u' + str(i), i*100] for i in range(1,11)],
columns=(gdx[-1].dims + gdx[-1].value_col_names))
gdx[-1].dataframe = data
gdx.write(out_file)
DEPENDENCIES
- Python 2.6 or higher 2.X; Python 3.4 or higher 3.X
- pandas (In general you will want the SciPy stack. Anaconda comes with it, or see [my notes for Windows](http://elainethale.wordpress.com/programming-notes/python-environment-set-up/).)
- For Python versions < 3.4, enum34. Also **uninstall the enum package** if it is installed.
- psutil (optional--for monitoring memory use)
- pytest (optional--for running tests)
- GAMS Python bindings
- See GAMS/win64/XX.X/apifiles/readme.txt on Windows,
GAMS/gamsXX.X_osx_x64_64_sfx/apifiles/readme.txt on Mac, or
/opt/gams/gamsXX.X_linux_x64_64_sfx/apifiles/readme.txt on Linux
- Run the following for the correct version of the Python bindings
python setup.py install
or
python setup.py build --build-base=/path/to/somwhere/you/have/write/access install
with the latter being for the case when you can install packages into
Python but don't have GAMS directory write access.
- .../apifiles/Python/api/setup.py works for Python 2.7
- For other versions of Python, especially 3.X, use
.../apifiles/Python/api_XX/setup.py. For Python 3.X in particular you will
need GAMS version >= 24.5.1 (Python 3.4, Windows and Linux),
24.7.4 (Python 3.4, Mac OS X), or >= 24.8.4 (Python 3.6)
TESTING
After installation, you can test the package using pytest:
pytest --pyargs gdxpds
If the tests fail due to permission IOErrors, apply `chmod g+x` and `chmod a+x`
to the `gdx-pandas/gdxpds/test` folder.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gdxpds-1.1.0.tar.gz
(641.6 kB
view details)
File details
Details for the file gdxpds-1.1.0.tar.gz
.
File metadata
- Download URL: gdxpds-1.1.0.tar.gz
- Upload date:
- Size: 641.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/28.8.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a410718b5a9b122019273d5cbf7182c792bcd8d00896d463f49cbabda494e87d |
|
MD5 | 61d6c54a06643636b01a951df89ecde0 |
|
BLAKE2b-256 | d308a5e5df9a8844d0a63759f78deff93279e59a720b5762fab60bf25fa93637 |