Skip to main content

Google Earth Engine ASCE Standardized Reference Evapotranspiration Functions

Project description

Latest version on PyPI Build status

Google Earth Engine (GEE) functions for computing daily and hourly reference ET.

Usage

Daily

The following demonstrates how to compute a single daily ETr value using weather data for 2015-07-01 from the Fallon, NV AgriMet station. The necessary unit conversions are shown on the input values. The raw input data is available here.

import math
import ee
import geerefet

# Unit conversions
tmin_c = (66.65 - 32) * (5.0 / 9)                          # F -> C
tmax_c = (102.80 - 32) * (5.0 / 9)                         # F -> C
tdew_c = (57.26 - 32) * (5.0 / 9)                          # F -> C
ea = 0.6108 * math.exp(17.27 * tdew_c / (tdew_c + 237.3))  # kPa
rs = (674.07 * 0.041868)                                   # Langleys -> MJ m-2 d-1
uz = 4.80 * 0.44704                                        # mpg -> m s-1
lat_radians = (39.4575 * math.pi / 180)                    # degrees -> radians

etr = geerefet.Daily(
    tmin=tmin_c, tmax=tmax_c, ea=ea, rs=rs, uz=uz, zw=3, elev=1208.5,
    lat=lat_radians, doy=182).etr().getInfo()

print('ETr: {:.2f} mm'.format(float(etr)))

Hourly

The following demonstrates how to compute a single hourly ETr value using weather data for 18:00 UTC (11:00 AM PDT) on 2015-07-01 from the Fallon, NV AgriMet station. The necessary unit conversions are shown on the input values. The raw input data is available here

import math
import ee
import geerefet

# Unit conversions
tmean_c = (91.80 - 32) * (5.0 / 9)           # F -> C
ea = 1.20                                    # kPa
rs = (61.16 * 0.041868)                      # Langleys -> MJ m-2 h-1
uz = 3.33 * 0.44704                          # mph -> m s-1
lat_radians = (39.4575 * math.pi / 180)      # degrees -> radians
lon_radians = (-118.77388 * math.pi / 180)   # degrees -> radians

etr = geerefet.Hourly(
    tmean=tmean_c, ea=ea, rs=rs, uz=uz, zw=3, elev=1208.5,
    lat=lat_radians, lon=lon_radians, doy=182, time=18).etr().getInfo()

print('ETr: {:.2f} mm'.format(float(etr)))

GRIDMET

A helper function for computing daily ETo and ETr for GRIDMET images is available.

import ee
import geerefet

gridmet_img = ee.Image(ee.ImageCollection('IDAHO_EPSCOR/GRIDMET').first())
etr = geerefet.Daily.gridmet(gridmet_img).etr().getInfo()

print('ETr: {:.2f} mm'.format(float(etr)))

Input Parameters

Required Parameters (hourly & daily)

Variable

Type

Description [units]

ea

ee.Image, ee.Number

Actual vapor pressure [kPa]

rs

ee.Image, ee.Number

Incoming shortwave solar radiation [MJ m-2 day-1]

uz

ee.Image, ee.Number

Wind speed [m/s]

zw

ee.Number

Wind speed height [m]

elev

ee.Image, ee.Number

Elevation [m]

lat

ee.Image, ee.Number

Latitude [radians]

doy

ee.Image, ee.Number

Day of year

Required Daily Parameters

Variable

Type

Description [units]

tmin

ee.Image, ee.Number

Minimum daily temperature [C]

tmax

ee.Image, ee.Number

Maximum daily temperature [C]

Required Hourly Parameters

Variable

Type

Description [units]

tmean

ee.Image, ee.Number

Average hourly temperature [C]

lon

ee.Image, ee.Number

Longitude [degrees]

time

ee.Image, ee.Number

UTC hour at start of time period

Optional Parameters

Variable

Type

Description [units]

method

str

Calculation method
  • ‘asce’ – Calculations will follow ASCE-EWRI 2005 (default)

  • ‘refet’ – Calculations will follow RefET software

rso_type

str

Clear sky solar radiation (Rso) model
  • ‘full’ – Full clear sky solar formulation (default)

  • ‘simple’ – Simplified clear sky solar formulation (Eq. 19)

  • ‘array’ – Read Rso values from “rso” function parameter

rso

ee.Image, ee.Number

Clear sky solar radiation [MJ m-2 day-1]
  • Only needed if rso_type is ‘array’

  • Defaults to None if not set

ASCE vs. RefET

TODO Discuss differences between “asce” and “refet” methods.

Issues

Currently the user must handle all of the file I/O and unit conversions.

The latitude/longitude units are in degrees, not radians (this is different than the python RefET modules).

Cloudiness Fraction (hourly)

The hourly reference ET calculation is currently performed independently for each time step. The cloudiness fraction (fcd) for very low sun angles (i.e. at night) is hard coded to 1 for very low sun angles instead of being derived from the .

Installation

To install the RefET-GEE python module:

pip install geerefet

Validation

Please see the validation document for additional details on the source of the test values and the comparison of the functions to the Ref-ET software.

Dependencies

Modules needed to run the test suite:

References

ASCE-EWRI Standardized Reference Evapotranspiration Equation (2005)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geerefet-0.1.5.tar.gz (24.5 kB view details)

Uploaded Source

File details

Details for the file geerefet-0.1.5.tar.gz.

File metadata

  • Download URL: geerefet-0.1.5.tar.gz
  • Upload date:
  • Size: 24.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for geerefet-0.1.5.tar.gz
Algorithm Hash digest
SHA256 0bbbc73e99fb8b6c2f23ba49e35421f93236052ad280ff8aaace64001023a321
MD5 f60bbe7be240aa5a2c1b1bba12ced532
BLAKE2b-256 7146c059a8b2fcef830b477936afdaf7ecc7c70531f3b88630bb525d114c6e30

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page