download Google Earth Engine datasets to tiles as geotiff arrays
Project description
geetiles
download Google Earth Engine datasets to tiles as geotiff arrays
Uses the Google Earth Engine High Volume Endpoint which, according to the documentation:
This service is designed to support a much larger number of simultaneous requests per user, but provides less caching, so it's best for small queries that don't involve any sort of aggregation (like fetching tiles from pre-built images).
install with
pip install geetiles
1. create grid on a given area of interest as wkt
geet grid --aoi_wkt_file luxembourg.wkt --chip_size_meters 1000 --aoi_name lux --dest_dir .
you can find the file luxembourg.wkt
under data
. Usually you would have to provide your own with your area of interest, with coordinates expressed in WSG84 degrees lon/lat.
this generates file ./lux_partitions_aschips_14c55eb7d417f.geojson
. Use a tool such as QGIS to view it.
2. download tiles
geet download --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --dataset_def sentinel2-rgb-median-2020 --pixels_lonlat [100,100] --skip_if_exists
this fills the folder lux_partitions_aschips_14c55eb7d417f/sentinel2-rgb-median-2020
with RGB geotiff images of size 100x100 pixels.
If using sentinel2-rgb-median-2020
as dataset_def
, which is an alias to Sentinel-2 MSI Level 2-A GEE dataset, taking the median of the cloudless chips over the year 2020.
If using esaworldcover-2020
as dataset_def
, which is an alias to ESA WorldCover 10m v100 GEE dataset.
Other usages
Other ways to create the set of tiles (shapes)
-
As random partitions with at most 5km size length (figure below left).
geet random --aoi_wkt_file luxembourg.wkt --max_rectangle_size_meters 20000 --aoi_name lux --dest_dir .
-
Using the reference administrative divisions at EU Eurostat (figure below right)
geet select --orig_shapefile COMM_RG_01M_2016_4326.zip --aoi_wkt_file luxembourg.wkt --tiles_name communes --aoi_name lux --dest_dir .
Using your own code to define the GEE source image object.
geet download --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --dataset_def crops.py --pixels_lonlat [100,100] --skip_if_exists --skip_confirm --n_processes 20
where crops.py
contains a python class DatasetDefinition
following the structure of the predefined ones under defs
. The files crops.py
will be saved under the destination folder for reference. The destination folder is created alongside the tiles_file
.
Split geometries in train, test, val using geographic bands
With a certain angle
geet split --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --nbands 8 --train_pct .5 --test_pct 0.3 --val_pct 0.2 --angle 0.78
Keeping chips within the same coarser geometry in the same split. In this case, the train/test/val proportions may vary from the ones specified as chips will be distributed across the coarser geometries. First we must intersect the geometries
geet intersect --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --foreign_tiles_file lux_partitions_communes_1a471c686e053.geojson
and then, do the split
geet split --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --nbands 8 --train_pct .5 --test_pct 0.3 --val_pct 0.2 --angle 0.785 --foreign_tiles_name communes
here is how it would result.
Computing label proportions
With respect to a dataset downloaded with segmentation labels.
geet lp.compute --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --dataset_name esa-world-cover
We can also add the label proportions of the coarser tile in which each chip is embedded. First, we need to download the labels for each coarser tile from GEE.
geet download --tiles_file lux_partitions_communes_1a471c686e053.geojson --dataset_def esa-world-cover --meters_per_pixel 20 --skip_if_exists
then, compute the label proportions at this coarser tiles:
geet lp.compute --tiles_file lux_partitions_communes_1a471c686e053.geojson --dataset_name esa-world-cover
and then compute the label proportions from the coarser tiles.
geet lp.from_foreign --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --foreign_tiles_file lux_partitions_communes_1a471c686e053.geojson --dataset_name esa-world-cover
The resulting proportions are added in the corresponding tiles_file
Creating a dataset to share it
This will create a zip file, with a pickle per chip containing a dictionary with the chip image, label and proportions.
geet zip.dataset --tiles_file lux_partitions_aschips_14c55eb7d417f.geojson --foreign_tiles_file lux_partitions_communes_1a471c686e053.geojson --images_dataset_def sentinel2-rgb-median-2020 --labels_dataset_def esa-world-cover --readme_file README.txt
Some notes
- the hash codes in the name files are computed using the participating geometries. This ensures that changing geometries do not override each other(such as for random partitions, or a wkt with slightly different coordinates).
- the splits are saved both as a column in the corresponding
tiles_file
(which is ageojson
) and in a separtecsv
file. This is to enable fast loading fromcsv
(as loading fromgeojson
might take a while, especially for large dataset).
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file geetiles-0.1.6.tar.gz
.
File metadata
- Download URL: geetiles-0.1.6.tar.gz
- Upload date:
- Size: 8.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d04f62a71d1d1fc2e20108f28085ca0c3e201f3084dd27b45f0cb324695313a0 |
|
MD5 | cda74e378ed22e89f79ad25f7c1f1ff0 |
|
BLAKE2b-256 | 430ef1196645628c251e234b699c69ceb667fb5191a9ff11c3a29d203ecd1a9c |