Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

Extract Landsat surface reflectance time-series at given location from google earth engine

Project description


.. image::

.. image::


A python library (API + command lines) to extract Landsat time-series from the Google Earth Engine platform. Can query single pixels or spatially aggregated values over polygons. When used via the command line, extracted time-series are written to a sqlite database.



The principal function of the API is ``ts_extract``

.. code-block:: python

from geextract import ts_extract
from datetime import datetime

# Extract a Landsat 7 time-series for a 500m radius circular buffer around
# a location in Yucatan
lon = -89.8107197
lat = 20.4159611
LE7_dict_list = ts_extract(lon=lon, lat=lat, sensor='LE7',
start=datetime(1999, 1, 1), radius=500)

Command line

``geextract`` comes with two command lines, for extracting Landsat time-series directly from the comman line.

- ````: Extract a Landsat multispectral time-series for a single site. Extracted data are automatically added to a sqlite database.
- ````: Batch order Landsat multispectral time-series for multiple locations.

.. code-block:: bash --help

# Extract all the LT5 bands for a location in Yucatan for the entire Landsat period, with a 500m radius -s LT5 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1 -s LE7 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1 -s LC8 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1

.. code-block:: bash --help

# Extract all the LC8 bands in a 500 meters for two locations between 2012 and now
echo "4.7174,44.7814,rompon\n-149.4260,-17.6509,tahiti" > site_list.txt site_list.txt -b 1984-01-01 -s LT5 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts site_list.txt -b 1984-01-01 -s LE7 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts site_list.txt -b 1984-01-01 -s LC8 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts


You must have a `Google Earth Engine <!/>`_ account to use the package.

Then, in a vitual environment run:

.. code-block:: bash

pip install git+
earthengine authenticate

This will open a google authentication page in your browser, and will give you an authentication token to paste back in the terminal.

You can check that the authentication process was successful by running.

.. code-block:: bash

python -c "import ee; ee.Initialize()"

If nothing happens... it's working.


A quick benchmark of the extraction speed, using a 500 m buffer.

.. code-block:: python

import time
from datetime import datetime
from pprint import pprint
import geextract

lon = -89.8107197
lat = 20.4159611

for sensor in ['LT5', 'LE7', 'LT4', 'LC8']:
start = time.time()
out = geextract.ts_extract(lon=lon, lat=lat, sensor=sensor, start=datetime(1980, 1, 1, 0, 0),, radius=500)
end = time.time()

pprint('%s. Extracted %d records in %.1f seconds' % (sensor, len(out), end - start))

.. code-block:: pycon

# 'LT5. Extracted 142 records in 1.9 seconds'
# 'LE7. Extracted 249 records in 5.8 seconds'
# 'LT4. Extracted 7 records in 1.0 seconds'
# 'LC8. Extracted 72 records in 2.4 seconds'

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for geextract, version 0.3
Filename, size File type Python version Upload date Hashes
Filename, size geextract-0.3.tar.gz (9.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page