Genomics England Bioinformatics team model definitions
Project description
GelReportModels
This project contains several models used by Genomics England systems. This is a development guide, the models documentation can be found at https://gelreportmodels.genomicsengland.co.uk.
These models are defined using Avro Interface Design Language (IDL) which is agnostic of any implementation language. The models are then used to generate source code employed to store the information. The source code is either Python or Java so far, but this can be easily extended.
From the Avro models you can generate:
- Java source code
- Python source code
- JSON schemas
- AVPR schemas
- HTML documentation
Maven is employed for Java dependency management. Particularly, OpenCB https://github.com/opencb/biodata models are imported through a maven dependency and then extracted into the local folder for schemas.
This is not required unless you upgrade OpenCB models version, as the OpenCB models are commited in the repository under schemas/IDLs/org.opencb.biodata.models
.
To import the OpenCB dependency and extract the models in your local environment run:
% mvn clean initialize
Versioning
Models are organised in packages:
- Internal
- org.gel.models.report.avro
- org.gel.models.participant.avro
- org.gel.models.metrics.avro
- org.gel.models.cva.avro
- org.gel.models.system.avro
- External
- org.ga4gh.models
- org.opencb.biodata.models
A package is formed by a set of schema files having .avdl
extension.
There are dependencies between packages that require that we build packages together.
Each of those packages support independent versioning. Also there are build versions that determine a set of specific packages that are built together. These information is contained within builds.json
in an array of build descriptions.
The following represents the build version 4.3.0-SNAPSHOT
having package org.ga4gh.models version 3.0.0, package org.gel.models.cva.avro version 0.4.0-SNAPSHOT and so on.
{
"version": "4.3.0-SNAPSHOT",
"packages": [
{
"package": "org.ga4gh.models",
"python_package": "ga4gh",
"version": "3.0.0",
"dependencies": []
},
{
"package": "org.gel.models.cva.avro",
"python_package": "cva",
"version": "0.4.0-SNAPSHOT",
"dependencies": [
"org.gel.models.report.avro",
"org.gel.models.participant.avro",
"org.gel.models.system.avro",
"org.opencb.biodata.models"
]
},
{
"package": "org.gel.models.metrics.avro",
"python_package": "metrics",
"version": "1.1.0-SNAPSHOT",
"dependencies": []
},
{
"package": "org.gel.models.participant.avro",
"python_package": "participant",
"version": "1.0.4-SNAPSHOT",
"dependencies": []
},
{
"package": "org.gel.models.report.avro",
"python_package": "reports",
"version": "4.2.0-SNAPSHOT",
"dependencies": [
"org.gel.models.participant.avro"
]
},
{
"package": "org.gel.models.system.avro",
"python_package": "system",
"version": "0.1.0-SNAPSHOT",
"dependencies": []
},
{
"package": "org.opencb.biodata.models",
"python_package": "opencb",
"version": "1.3.0-SNAPSHOT",
"dependencies": []
}
]
}
Every package in a build is built in a sandbox folder under schemas/IDLs/build
together with those packages in the list of dependencies for each package. This introduces two strong constraints in the models:
- The same package cannot contain two records named equally in different schema files
- Schema files in different packages cannot be named equally
The build sandbox is deleted after every build.
Getting started
Install requirements
Install sphynx
:
sudo apt-get install python-sphinx
Install avrodoc
:
sudo apt-get install nodejs nodejs-legacy
sudo apt-get install npm
sudo npm install avrodoc -g
Install python dependencies:
pip install -r requirements.txt
Build the models
To build all builds described in builds.json
run:
% python build.py
This will create the following:
- Python source code representing the Avro records in the folder
./protocols/models
- Java source code representing the Avro records in the folder
./target/generated-sources/avro
- The models HTML documentation under
./docs/html_schemas
It may be handy to skip the documentation generation by using the flag --skip-docs
.
Building legacy versions of the models
See builds.json
for the information on all legacy versions and the specific package versions and dependencies in each of those.
To build a specific version run:
% python build.py --version 3.0.0
Using custom tools to build the models
To facilitate using custom tools to build the models you can prepare the sandbox for a specific version running:
% python build.py --version 4.0.0 --only-prepare-sandbox
This will copy all required schemas for that build under the folder schemas/IDLs/build
.
Other build options
Use --skip-docs
to avoid generating documentation which affects build time greatly.
Use --skip-java
to avoid generating Java source code.
Use --update-docs-index
to update the documentation landing page with the latest documentation generated.
Java Packaging
To pack the Java source code representing these models in a jar file use:
% mvn package
To install it in your system so it is accessible as a maven dependency to other Java applications run:
% mvn install
Unit tests
To run some unit tests implemented in Python run:
% ./run_tests.sh
Mock data
Generate a mocked object with custom fields as follows:
from protocols.util.dependency_manager import VERSION_500
from protocols.util.factories.avro_factory import GenericFactoryAvro
interpretation_request_factory = GenericFactoryAvro.get_factory_avro(
protocols.reports_4_2_0.InterpretationRequestRD,
version = VERSION_500
)
instance = interpretation_request_factory(analysisReturnUri = "myURI")
self.assertTrue(instance.validate(instance.toJsonDict()))
self.assertTrue(instance.analysisReturnUri == "myURI")
Migrations
TODO
Building Resources From a Container
From your starting directory, eg. ~/gel/:
Clone this repo
git@github.com:genomicsengland/GelReportModels.git
Then run the following (you may need sudo
depending on your system configuration):
./build_models
Once the build is successful, check the resources are there:
root@e444d27c16b9:/gel# ls GelReportModels/protocols/
GelProtocols.pyc cva_0_3_0.py migration protocol.py
__init__.py ga4gh.py opencb.py protocol.pyc
__init__.pyc ga4gh_3_0_0.py opencb_1_2_0-SNAPSHOT.py reports.py
catalog_variable_set metrics.py participant.py reports_2_1_0.py
cva.py metrics_1_0_0.py participant_1_0_0.py reports_3_0_0.py
root@e444d27c16b9:/gel#
Also check that Java resources are there:
root@4dabae77118d:/gel# ls -l GelReportModels/target/
total 53620
drwxr-xr-x 2 root root 4096 Aug 18 08:35 antrun
drwxr-xr-x 3 root root 4096 Aug 18 08:45 classes
drwxr-xr-x 2 root root 4096 Aug 18 08:35 dependency-maven-plugin-markers
drwxr-xr-x 17 root root 4096 Aug 18 08:55 gel-models-4.3.0-SNAPSHOT
-rw-r--r-- 1 root root 1819234 Aug 18 08:45 gel-models-4.3.0-SNAPSHOT.jar
-rw-r--r-- 1 root root 53054906 Aug 18 08:55 gel-models-docs-4.3.0-SNAPSHOT.war
drwxr-xr-x 4 root root 4096 Aug 18 08:45 generated-sources
drwxr-xr-x 2 root root 4096 Aug 18 08:45 maven-archiver
drwxr-xr-x 3 root root 4096 Aug 18 08:45 maven-status
then in a separate tab/window, from the GelReportModels directory:
$ sudo docker ps -alq
containerID
and use this container ID to copy the python files from GelReportModels/protocols:
$ sudo docker cp containerID:/GelReportModels/protocols .
then check you have them present:
$ ls ./protocols/
catalog_variable_set GelProtocols.pyc migration protocol.py
cva_0_3_0.py __init__.py opencb_1_2_0-SNAPSHOT.py protocol.pyc
cva.py __init__.pyc opencb.py reports_2_1_0.py
ga4gh_3_0_0.py metrics_1_0_0.py participant_1_0_0.py reports_3_0_0.py
ga4gh.py metrics.py participant.py reports.py
Additional tools
The conversion between the different Avro schema formats, source code and documentation are available through the following utility:
$ cd resources/GelModelsTools/
$ python gel_models_tools.py --help
usage: gel_models_tools.py <command> [<args>]
GEL models toolbox
positional arguments:
command Subcommand to run
(idl2json|idl2avpr|json2java|idl2python|json2python|avpr2html)
optional arguments:
-h, --help show this help message and exit
Deploying
To deploy to GELs internal pypi instance, run the GEL-models/Deploy GelReportModels into Pypi
bio jenkins job and this will automate the deploy.
To deploy to public PyPi you can use one of the Dockerfiles in this repo. Create an image and run it as follows:
docker build -f Dockerfile-python3 .
docker run -it <hashname> /bin/bash
Once inside the container you need to create a file called ~/.pypirc with contents as follows:
[distutils]
index-servers =
pypi
[pypi]
repository: https://upload.pypi.org/legacy/
username: <your username>
password: <your password>
Once you have this file, you can run the following commands:
python3 build.py --skip-java --skip-docs
pip3 install --upgrade twine wheel setuptools keyrings.alt
python3 setup.py sdist bdist_wheel
twine upload dist/GelReportModels-7.3.6.tar.gz
See https://packaging.python.org/tutorials/packaging-projects/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file GelReportModels-7.8.0.tar.gz
.
File metadata
- Download URL: GelReportModels-7.8.0.tar.gz
- Upload date:
- Size: 2.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cab8d4ff65a1ada1a5b97d38dab682f2fa6c1ffe31738b01cb9e23d011de092b |
|
MD5 | 2631b59f214c5c04659a2cda0dbf5a59 |
|
BLAKE2b-256 | c60ab3567951daa8eab049d77b1c6f0407eeb33c719e32fc11c5334e5eaa5251 |
File details
Details for the file GelReportModels-7.8.0-py3-none-any.whl
.
File metadata
- Download URL: GelReportModels-7.8.0-py3-none-any.whl
- Upload date:
- Size: 2.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9606a59352aed2016d023d3b13439755bfa425d7e10d687083c5415c470f9c68 |
|
MD5 | 507698e9ac61db1b4e40cfbb616fcbd2 |
|
BLAKE2b-256 | c7c47254f0ded9e2f52f8678d13199a6365016782d70ea7e81e58583aa727a55 |