Gemini - Pytorch
Project description
Gemini
The open source implementation of Gemini, the model that will "eclipse ChatGPT", it seems to work by directly taking in all modalities without an encoder for some kind which means that the encoding is built into the modal.
The input sequences for Gemini consist of texts, audio, images, and videos. These inputs are transformed into tokens, which are then processed by a transformer. Subsequently, conditional decoding takes place to generate image outputs.
Interestingly, the architecture of Gemini bears resemblance to Fuyu's architecture but is expanded to encompass multiple modalities. Instead of utilizing a visual transformer (vit) encoder, Gemini simply feeds image embeddings directly into the transformer.
For Gemini, the token inputs will likely be indicated by special modality tokens such as [IMG], , [AUDIO], or . Codi, a component of Gemini, also employs conditional generation and makes use of the tokenized outputs.
To implement this model effectively, I intend to initially focus on the image embeddings to ensure their smooth integration. Subsequently, I will proceed with incorporating audio embeddings and then video embeddings.
Install
pip3 install gemini-torch
Usage
Gemini Transformer Usage
- Base transformer
- Multi Grouped Query Attn / flash attn
- rope
- alibi
- xpos
- qk norm
- no pos embeds
- kv cache
import torch
from gemini_torch import Gemini
# Initialize the model
model = Gemini(
num_tokens=50432,
max_seq_len=8192,
dim=2560,
depth=32,
dim_head=128,
heads=24,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=12,
rotary_xpos=True,
attn_flash=True,
attn_kv_heads=2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
# Initialize the randint
x = torch.randint(0, 50432, (1, 8192))
# Apply model to y
y = model(x)
# Print logits
print(y)
Multi-Modal with Imgs
- Img processing through a specially crafted module that takes in img -> patches it -> then reshapes to the shape of the text tensors, [B, seqlen, dim] -> align with text tokens
import torch
from gemini_torch.model import Gemini
# Initialize model
model = Gemini(
num_tokens=50432,
max_seq_len=8192,
dim=2560,
depth=32,
dim_head=128,
heads=24,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=12,
rotary_xpos=True,
attn_flash=True,
attn_kv_heads=2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
# Text shape: [batch, seq_len, dim]
text = torch.randint(0, 50432, (1, 8192))
# Img shape: [batch, channels, height, width]
img = torch.randn(1, 3, 256, 256)
# Apply model to text and img
y = model(text, img)
# Output shape: [batch, seq_len, dim]
print(y.shape)
ImgToTransformer
- takes in img -> patches -> reshapes to [B, SEQLEN, Dim] to align with transformer
import torch
from gemini_torch.utils import ImgToTransformer
# Example usage
num_patches = 16
patch_size = 16
transformer_dim = 512
img_channels = 3
seq_len = 50000
reduced_dim = 256 # Reduced dimension after dimensionality reduction
model = ImgToTransformer(
num_patches, patch_size, transformer_dim, img_channels, seq_len, reduced_dim
)
# Dummy image input [BATCH, CHANNELS, HEIGHT, WIDTH]
dummy_img = torch.randn(1, 3, 64, 64) # Batch size of 1, 64x64 RGB image
# Forward pass
seq_space_output = model(dummy_img)
print(seq_space_output.shape) # Expected shape: [1, 50000, 256]
References
- Combine Reinforcment learning with modular pretrained transformer, multi-modal capabilities, image, audio,
- self improving mechanisms like robocat
- PPO? or MPO
- get good at backtracking and exploring alternative paths
- speculative decoding
- Algorithm of Thoughts
- RLHF
- Gemini Report
- Gemini Landing Page
Todo
- Implement the img feature embedder and align imgs with text and pass into transformer
- Implement the audio processing by making an audio processor that intakes in audio embeddings and reshapes it to match language embeddings dimension shape [B, SEQLEN, Dim]
- Do the same for video
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gemini_torch-0.0.4.tar.gz
.
File metadata
- Download URL: gemini_torch-0.0.4.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 628d9faa8822584ebc99af02ec04ccc46d4d8902700e96b1118a74751e199b5b |
|
MD5 | 751c2a3d2a66c04dc7b468045ff51a89 |
|
BLAKE2b-256 | 69814a19596d8a452b927b3b7f00d1dc88f52dfbb792fb3a76504d97bb4c34c3 |
File details
Details for the file gemini_torch-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: gemini_torch-0.0.4-py3-none-any.whl
- Upload date:
- Size: 19.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91afbe402b3e20a61194bb660f735dae16bb704556e3246bce4b57f8a13d401e |
|
MD5 | 0538f4780e4be1cf9fb7e331f8b54072 |
|
BLAKE2b-256 | 1a629c9028c9d314c020adbf196434ff29341b6bf2e9f5ec51c9ffada18f0e2d |