Skip to main content

library for structural biology

Project description

CI Build status

GEMMI can help if you work with:

  • macromolecular models (from mmCIF, PDB and mmJSON files),
  • refinement restraints (CIF files) and small molecule models,
  • crystallographic reflections (from MTZ and SF-mmCIF files),
  • electron and other density maps (MRC/CCP4 files),
  • crystallographic symmetries,
  • or if you just read and write CIF/STAR files (where C=Crystallographic).

GEMMI is a C++ library (currently, C++14) accompanied by:

  • command-line tools,
  • Python bindings,
  • Fortran 2003+ interface (in progress),
  • partial WebAssembly bindings,
  • online tools and little data viz projects.

Documentation: http://gemmi.readthedocs.io/en/latest/

GEMMI is an open-source project of CCP4 and Global Phasing Ltd, two major providers of software for macromolecular crystallography.

Citing: JOSS paper.

License: MPLv2, or (at your option) LGPLv3. © 2017-2024 Global Phasing Ltd.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gemmi-0.7.1.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

gemmi-0.7.1-cp313-cp313-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.13Windows x86-64

gemmi-0.7.1-cp313-cp313-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

gemmi-0.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp313-cp313-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

gemmi-0.7.1-cp313-cp313-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

gemmi-0.7.1-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12Windows x86-64

gemmi-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

gemmi-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp312-cp312-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

gemmi-0.7.1-cp312-cp312-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

gemmi-0.7.1-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11Windows x86-64

gemmi-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

gemmi-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

gemmi-0.7.1-cp311-cp311-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

gemmi-0.7.1-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10Windows x86-64

gemmi-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gemmi-0.7.1-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

gemmi-0.7.1-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9Windows x86-64

gemmi-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gemmi-0.7.1-cp39-cp39-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

gemmi-0.7.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8Windows x86-64

gemmi-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

gemmi-0.7.1-cp38-cp38-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

gemmi-0.7.1-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

File details

Details for the file gemmi-0.7.1.tar.gz.

File metadata

  • Download URL: gemmi-0.7.1.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1.tar.gz
Algorithm Hash digest
SHA256 73bb4a2c574ef7586efdf0161aae22bb75c0301af5e9cc22252877e707facdd2
MD5 8ac15faf88bc79bd7e9bba1ab4484f5f
BLAKE2b-256 f97131b3706e939501daf06c87fe8a13d4c223d6c3f8bbe9889374047d5ea176

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 402a71c935cab167ac6a7a29045e47a972388ef6f62fa3f477d8b0241fe53d4e
MD5 a4bc93397b127cc06f8ee71651334e15
BLAKE2b-256 3a5db645a1e7c71ba562cf31987ee7499f603b6b49f67ccab521b3b600f53a1e

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 658ce0578eb966530f3733738130120e7305a0fa421349089279a0164ac24e23
MD5 8e6a872eda476b66937a3e69f75cc14a
BLAKE2b-256 3b39c60a140a2b52eb1efce62486aef47090fe54c603891b47037af61f5ae316

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0a9358fec36cad3f9f55e5ca927e378bd48ded30522ae257153787b699ac303
MD5 b2c003a3ece21037959b761444aea388
BLAKE2b-256 7baae333d42318c9668e1c3c5571ce6007d29ed3da1814d849e0ac35c4be3edc

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 100a150da8f47db8e0c329ca87e5b4479292b33c6aee3529cd5a8451321a624f
MD5 28269da6d87aac30db3277a0836385c7
BLAKE2b-256 5c5b1d6842cd88f2a37ec31dcceb2475d302b78bd61bc01be1c8188f05a07cb8

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 60afbd55b0f9909684f71e22915a3be6985bd6125d9056acc3531d3b83c6421a
MD5 f844f09c7cb47395dd5d7378c41ce8ab
BLAKE2b-256 80467bb321130abd77c4ac3e2a885d47e9230c227e82d902d4c5ea6e89202503

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9aee1a50248c259c44aff20c3d1b3a246b00536279e22f24389e45674f9de5b3
MD5 c91cdc31fcbe74f16da1830056bdb0dd
BLAKE2b-256 d38fbcd00bd14e58a8f9bac3ed0794221ba234f0d0dae4aa5ed470faafc1d9ac

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 08080973b422602f6bd983ec2ff909601a283d358175bd84cbb8bf43d9eeeb4f
MD5 9a10df529d830e8ee81da0cfdd74f354
BLAKE2b-256 4f09adea72793f2276ad654c7e98d10e1e4076517390d4c99b4f3080a1722d21

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5935c5b5c510c223f9afad9261c268118d6dd63511f9dc8707e50b9ca771e78
MD5 ffbc05dbcbdb22709758cf2131fb9c1e
BLAKE2b-256 9ad1035c45c28f0b17d14600eeb04f27667d233d050bb01c0f8ec316d0773f4a

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0388a02758c4d518d6be2a7313cf81b1292978658e24b655f1112ed3764826ff
MD5 920a9bc48d5b2aea8fed193d5efaf67d
BLAKE2b-256 e2a0bc5b1719a7cb0c30edff6fe5da7d1acaa543e9bd578dc654eafce169a72c

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3f4421a5e38ef3f1474b466f888c1517d813b99935aafe52f1da22053b1eb827
MD5 b35d82486429204a416a129671dbbe14
BLAKE2b-256 de3243020472d5a5ef2f57d96fd33e44d2c44129896a9cfd8e1dca8c15898a38

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 38fd01bf1e9373fbb18aa64a12ccec320204c4ffb2d37b0f650be55b5f674495
MD5 0d3acf197de5e216ab918633cffbfc5b
BLAKE2b-256 bd15ed7d491c2e1c8c13ed3c800b71ef267c0d50bacf9091773edce911392e17

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36b32f8b3b98ab6aa0b92a3d6d944bbb2ee2191f3607b2df966ad4799bddadf3
MD5 36308e21b61d20644437bbbd18ac7516
BLAKE2b-256 9774ffa359c7093ac5a455fb4670f9aebd2329cbb7530226a08b4e9335547a55

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cbabee2e1a9f5bcfc249e8383ba551f84e1cfd25ca1af5109bb8d8c867be9c3
MD5 b31e07f452933db9e6514be722e4763f
BLAKE2b-256 fe95420a6b84d0e5306b366bd6d2e246f5dd33018bc7cad194ff187845245a82

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f8924cdf61b3467441289cb65a6af3d7752143ef8f0a350c055746d1bfca2d7
MD5 e1c5c7bbcc6af8b1823e4cd46c7dfa39
BLAKE2b-256 1b0b80683539832fa5048cb75336228fc2f19f8b4977e9e820277abc8babafeb

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 116d1f84eb3fe2e8b80a3d0736f10b9d946d207a79b8998211ef3207037f54aa
MD5 c514eeb123059af90cffee1b6af0af6d
BLAKE2b-256 b882b507d5a0084db70951e970ca4eadda035ff16913e61bff1d334889e16086

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 120b5654011458e445b8445d3b12dea1c7a3997f4bc3e0cceeefaea710d8d72e
MD5 5f3939e2bbb00e70707be745bc835576
BLAKE2b-256 c3fa8cd841294c9439eb5b7adc474eef312cae1295be767a720be512e772e0a8

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f68dbc4da0d773c3e3c4921fcec9f66432bb31dff1c5d3bdf7d2e51f9ceff02
MD5 80f8f64b3ab33017a6fd72a2feab3675
BLAKE2b-256 0cf7225b329b1992df222051e115668170b4547f706dac5e34cd93c6ae4d65f1

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b492d5cca2e6b508ba6090bd2ef1e4eefc7150a5a1eacb1d87ac08cf93e0c117
MD5 954b9a8a341d4f0f65fb5e235f085d23
BLAKE2b-256 4a70111ebf98dc8fb9fd3edb5ce8d93d468af3ac4ed621bd5bff039d803ac303

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fc55652d0930a2529b88ca2e78a665ba218ddc15d8f0ff25e6b2f6d98cc75169
MD5 2ef856044b965e3577177926db32b3a9
BLAKE2b-256 9ceea63e8681f9e4d9d1f6e0ba56f32ba14d8998391e566093a6b6c4d317e61b

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 08a22269b5487d889ed0fe63de6027a8b0767199437822d6d75c54ea6787bac5
MD5 87ed6a1283de10722dbf726a494c5ddf
BLAKE2b-256 b312fc984869a6e5b1c60fd11dcaa9ce6881256be9f0e3ec45d028101594889c

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15b205df4d9848a62c3488fe43f25b55f7eb9c1735f4099deb334cd04b1d3170
MD5 660920d9d1a4b2a2a158ef82cd46aad6
BLAKE2b-256 4c2a5d4f17e6bb30d0bb659798756f56c4e00a4e806898c69b34c7505ec3209a

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a3fec96a92e3eea8e247eb0f4ffadea4ff9d9d0e15e8359cfb0084cb1b29113
MD5 0f152c60329e652cecd0a8cf3b645e87
BLAKE2b-256 bcc1f6776e63dd621642f5445d5232e7315c51b4c41cadce7cfea79a12d25f32

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7d231c028402d3cbe77f0392bea7841497b29610b5ab53de894401757f34ffc2
MD5 dea1de5439fcf8b75a45b1112e76bc34
BLAKE2b-256 1d64deadc73755957ef5c42cc521e2ef3391add56b182951e2f190518ce1271d

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gemmi-0.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gemmi-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c92b5a4c3aff607f8d792822673866627acaee4ab54fda4eb0959b5452cbadd
MD5 3bce4d68b177ba7a792516272a665c4c
BLAKE2b-256 84379e3d2ad00f6cbc318cbc50cc8418dd1a2e1646ddc44366195a5b0b3a51b8

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6099056dd3697f89f05c69a05ee22a570bd19eb04b744bff072c8476c3d7b244
MD5 6f551bb541c9423b073a00e712c2343f
BLAKE2b-256 1c312a9a5bbbf6c195e23a9770cc7fda727b85ca5dc3a60ce3ddcd05a672f8fb

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1feb244f8258df3b00c9b0fa28a5139da2a4a5e9f16ccda53f144d8fd8dad5e7
MD5 7244ce38790886d18c35ea6f61c14f70
BLAKE2b-256 95bc2d3d3a2f84ca1eee007609ca6989eb99662fb9c415c4baa37b143ef0ce10

See more details on using hashes here.

File details

Details for the file gemmi-0.7.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gemmi-0.7.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a34418cfabbb9ccf366a312ab37a654b887568eedd46dbb1ca3aff84b76e84c8
MD5 f4ca0a466b13c097be317f1c9e00f16a
BLAKE2b-256 8854916160e16c0dba5b0b7465838a0f791cd0ffc7e60d45daa921da5e8725a2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page