Skip to main content

Code to work with Genbank files

Project description

genbank

Python code to work with Genbank files

This repo contains several classes to help work with Genbank files

The flow goes:

File -> Locus -> Feature

To use:

from genbank.file import File

file = File('infile.gbk')
for locus in file:
	print(name)
	for feature in locus:
		print(feature)

You can also build a Locus object from the ground up:

from genbank.locus import Locus
locus = Locus('test', 'actgactgatcgtagctagc')
# then add a feature by parsing text of a genbank feature
locus.read_feature('  CDS  1..10')
# or add manually by specifing the type,strand,location
locus.add_feature('CDS',+1,[['10','20']])
locus.write()

which gives:

LOCUS       test                      20 bp
FEATURES             Location/Qualifiers
     CDS             1..10
     CDS             10..20
ORIGIN
        1 actgactgat cgtagctagc
//

This package also allows you to perform various conversions on a given genome file:

$ genbank.py tests/phiX174.gbk -f tabular
'phiX174'	'CDS'	(('100', '627'),)	{'gene': "G"}
'phiX174'	'CDS'	(('636', '1622'),)	{'gene': "H"}
'phiX174'	'CDS'	(('1659', '3227'),)	{'gene': "A"}
'phiX174'	'CDS'	(('2780', '3142'),)	{'gene': "B"}
'phiX174'	'CDS'	(('3142', '3312'),)	{'gene': "K"}

$ genbank.py tests/phiX174.gbk -f fasta
>phiX174
gtgtgaggttataacgccgaagcggtaaaaattttaatttttgccgctgagggg
ttgaccaagcgaagcgcggtaggttttctgcttaggagtttaatcatgtttcag

$ genbank.py tests/phiX174.gbk -f fna
>phiX174_CDS_[100..627] [gene="G"]
atgtttcagacttttatttctcgccataattcaaactttttttctgataag
>phiX174_CDS_[636..1622] [gene="H"]
atgtttggtgctattgctggcggtattgcttctgctcttgctggtggcgcc
>phiX174_CDS_[1659..3227]

$ genbank.py tests/phiX174.gbk -f faa
>phiX174_CDS_[100..627] [gene="G"]
MFQTFISRHNSNFFSDKLVLTSVTPASSAPVLQTPKATSSTLYFDSLTVNA
>phiX174_CDS_[636..1622] [gene="H"]
MFGAIAGGIASALAGGAMSKLFGGGQKAASGGIQGDVLATDNNTVGMGDAG
>phiX174_CDS_[1659..3227] [gene="A"]

$ genbank.py tests/phiX174.gbk -f coverage
phiX174	0.965

Print out the features of the given key:tag

$ genbank.py tests/phiX174.gbk -k CDS:gene > labels.tsv

Change the H of the second gene to something more informative: (ideally you will have columns from other sources, like excel)

perl -pi -e 's/H/Minor spike/' labels.tsv

Now edit all the features of the given key:tag with the updated labels:

$ genbank.py tests/phiX174.gbk -e CDS:gene < labels.tsv | head
LOCUS       phiX174                 5386 bp    DNA      PHG
FEATURES             Location/Qualifiers
     source          1..5386
     rep_origin      13..56
     CDS             100..627
                     /gene="G"
     CDS             636..1622
                     /gene="Minor spike"
     CDS             1659..3227

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genbank-0.100.tar.gz (28.4 kB view details)

Uploaded Source

Built Distribution

genbank-0.100-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file genbank-0.100.tar.gz.

File metadata

  • Download URL: genbank-0.100.tar.gz
  • Upload date:
  • Size: 28.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for genbank-0.100.tar.gz
Algorithm Hash digest
SHA256 fcf52cc224cb8f95b3e4d8888e0a035ca9f57567a22f2ecd0388171ad00a899c
MD5 a3b89e8ad29253ea83d0feebc1cb26a9
BLAKE2b-256 d39d510c9f187a5a79b107be0127984a73193664c215892d2f901709edcb4809

See more details on using hashes here.

File details

Details for the file genbank-0.100-py3-none-any.whl.

File metadata

  • Download URL: genbank-0.100-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for genbank-0.100-py3-none-any.whl
Algorithm Hash digest
SHA256 456f505c9388405d89adde0cacd24bb38331c85c236087e702e2ad233ec22781
MD5 c9ce816b93ae87d439fa8411de4ee581
BLAKE2b-256 af767e022976ded61a08a09b544e2004909b45bf5d8d02f411456c39d5c8a18d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page