Skip to main content

Generation base dependency

Project description

genbase logo

Generation base dependency

PyPI Python_version Build_passing License


Base functions, generation functions and generic wrappers.

© Marcel Robeer, 2021

Module overview

Module Description
genbase Readable data representations and meta information class.
genbase.data Wrapper functions for working with data.
genbase.decorator Base support for decorators.
genbase.internationalization i18n internationalization.
genbase.mixin Mixins for seeding (reproducibility) and state machines.
genbase.model Wrapper functions for working with machine learning models.
genbase.ui Extensible user interfaces (UIs) for genbase dependencies.

Installation

Method Instructions
pip Install from PyPI via pip3 install genbase.
Local Clone this repository and install via pip3 install -e . or locally run python3 setup.py install.

Releases

genbase is officially released through PyPI.

See CHANGELOG.md for a full overview of the changes for each version.

Packages using genbase


Explabox logo

The explabox aims to support data scientists and machine learning (ML) engineers in explaining, testing and documenting AI/ML models, developed in-house or acquired externally. The explabox turns your ingestibles (AI/ML model and/or dataset) into digestibles (statistics, explanations or sensitivity insights)! The text_explainability package is available through PyPI and fully documented at https://explabox.readthedocs.io/.


T_xt explainability logo

text_explainability provides a generic architecture from which well-known state-of-the-art explainability approaches for text can be composed. This modular architecture allows components to be swapped out and combined, to quickly develop new types of explainability approaches for (natural language) text, or to improve a plethora of approaches by improving a single module. The text_explainability package is available through PyPI and fully documented at https://text-explainability.readthedocs.io/.


T_xt sensitivity logo

text_explainability can be extended to also perform sensitivity testing, checking for machine learning model safety, robustness and fairness. The text_sensitivity package is available through PyPI and fully documented at https://text-sensitivity.readthedocs.io/.


API

genbase

Readable data representations and meta information class.

Class Description
Readable Ensure that a class has a readable representation.
Configurable Adds working with configs (.from_config(), from_json(), from_yaml(), ..., read_json(), ..., to_yaml()) to a class.
MetaInfo Adds type, subtype, callargs and other meta descriptors to a class (subclass of Configurable).
silence_tqdm Silence output of tqdm in a module.

Examples:

>>> from genbase import MetaInfo

>>> class ReturnCls(MetaInfo):
...     def __init__(self, value, **kwargs):
...         super().__init__(self,
...                          type='special_test',
...                          subtype='special',
...                          **kwargs)
...         self.value = value
...
...     @property
...     def content(self):
...          return {'value': self.value}

>>> obj = ReturnCls(value=5)
>>> obj.to_config()
{'META': {'type': 'special_test',
          'subtype': 'special'},
 'CONTENT': {'value': 5}}

Silence the output of tqdm in a with statement.

>>> import instancelib
>>> from genbase import silence_tqdm

>>> with silence_tqdm(instancelib):
...    model.predict(instances)

genbase.data

Wrapper functions for working with data.

Function Description
import_data() Import dataset into an instancelib.Environment (containing instances and ground-truth labels).
train_test_split() Split a dataset into training and test data.

Examples: Import from an online .csv file for the BBC News dataset with data in the 'text' column and labels in 'category':

>>> from genbase import import_data
>>> import_data('https://storage.googleapis.com/dataset-uploader/bbc/bbc-text.csv',
...             data_cols='text', label_cols='category')
TextEnvironment()

Convert a pandas DataFrame to instancelib Environment:

>>> from genbase import import_data
>>> import pandas as pd
>>> df = pd.read_csv('./Downloads/bbc-text.csv')
>>> import_data(df, data_cols=['text'], label_cols=['category'])
TextEnvironment()

Download a .zip file of the Drugs.com review dataset and convert each file in the ZIP to an instancelib Environment:

>>> from genbase import import_data
>>> import_data('https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip',
...             data_cols='review', label_cols='rating')
TextEnvironment(named_providers=['drugsComTest_raw.tsv', 'drugsComTrain_raw.tsv'])

Convert a huggingface Dataset (SST2 in Glue) to an instancelib Environment:

>>> from genbase import import_data
>>> from datasets import load_dataset
>>> import_data(load_dataset('glue', 'sst2'), data_cols='sentence', label_cols='label')
TextEnvironment(named_providers=['test', 'train', 'validation'])

genbase.decorator

Base support for decorators.

Decorator Description
@add_callargs Decorator that passes __callargs__ to a function if available. Useful in conjunction with MetaInfo.

Example:

>>> from genbase import MetaInfo, add_callargs

>>> class ReturnCls(MetaInfo):
...     def __init__(self, value, callargs=None, **kwargs):
...         super().__init__(self,
...                          type='special_test',
...                          subtype='special',
...                          callargs=callargs,
...                          **kwargs)
...         self.value = value
...
...     @property
...     def content(self):
...          return {'value': self.value}

>>> @add_callargs
... def example_fn(x: int, y: int, z: int = 5, t='str', **kwargs):
...     callargs = kwargs.pop('__callargs__', None)
...     return ReturnCls(value=x + y + z, callargs=callargs)

>>> example_fn(x=1, y=2).callargs
{'x': 1, 'y': 2, 'z': 5, 't': 'str'}

genbase.internationalization

i18n internationalization.

Function Description
get_locale() Get current locale.
set_locale() Set current locale .
translate_list() Get a list based on locale, as defined in the './locale' folder.
translate_string() Get a string based on locale, as defined in the './locale' folder.

Example:

>>> from genbase.internationalization import set_locale, translate_list
>>> set_locale('en')
>>> translate_list('stopwords')
['a', 'an', 'the']

>>> set_locale('nl')
>>> translate_list('stopwords')
['de', 'het', 'een']

genbase.mixin

Mixins for seeding (reproducibility) and state machines.

Class Description
SeedMixin Adds working with ._seed and ._original_seed for reproducibility.
CaseMixin Adds working with title-, sentence-, upper- and lowercase for random data generation.

Example:

>>> from genbase.mixin import SeedMixin
>>> class RandomCls(SeedMixin):
...     def __init__(self, seed: int = 0):
...         self._seed = self._original_seed = seed

>>> rc = RandomCls(seed=10)
>>> rc.seed
10

>>> rc._seed += 20
>>> rc.seed
30

>>> rc._original_seed
10

genbase.model

Wrapper functions for working with machine learning models.

Function Description
import_data() Import a model with instancelib or instancelib-onnx.

Examples: Make a scikit-learn text classifier and train it on SST2

>>> from genbase import import_data, import_model
>>> from datasets import load_dataset
>>> ds = import_data(load_dataset('glue', 'sst2'), data_cols='sentence', label_cols='label')
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> pipeline = Pipeline([('tfidf', TfidfVectorizer()),
...                      ('clf', MultinomialNB())])
>>> import_model(pipeline, ds, train='train')
SklearnDataClassifier()

Load a pretrained ONNX model with labels 'Bedrijfsnieuws', 'Games' and 'Smartphones'

>>> from genbase import import_model
>>> import_model('data-model.onnx', label_map={0: 'Bedrijfsnieuws', 1: 'Games', 2: 'Smartphones'})
SklearnDataClassifier()

genbase.ui

Extensible user interfaces (UIs) for genbase dependencies.

Function Description
get_color() Get color from a matplotlib colorscale.
plot.matplotlib_available() Check if matplotlib is installed.
plot.plotly_available() Check if plotly is installed.
notebook.format_label() Format label as title.
notebook.format_instances() Format multiple instancelib instances.
notebook.is_colab() Check if environment is Google Colab.
notebook.is_interactive() Check if the environment is interactive (Jupyter Notebook).
Class Description
plot.ExpressPlot Plotter for plotly.express.
notebook.Render Base class for rendering configs (configuration dictionaries).

Example:

>>> from genbase.ui.notebook import Render
>>> class CustomRender(Render):
...     def __init__(self, *configs):
...         super().__init__(*configs)
...         self.default_title = 'My Custom Explanation'
...         self.main_color = '#ff00000'
...         self.package_link = 'https://git.io/text_explainability'
...
...     def format_title(self, title: str, h: str = 'h1', **renderargs) -> str:
...         return f'<{h} style="color: red;">{title}</{h}>'
...
...     def render_content(self, meta: dict, content: dict, **renderargs):
...         type = meta['type'] if 'type' in meta else ''
...         return type.replace(' ').title() if 'explanation' in type else type

>>> from genbase import MetaInfo
>>> NiceCls(MetaInfo):
...     def __init__(self, **kwargs):
...         super().__init__(renderer=CustomRenderer, **kwargs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genbase-0.3.0.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

genbase-0.3.0-py3-none-any.whl (30.8 kB view details)

Uploaded Python 3

File details

Details for the file genbase-0.3.0.tar.gz.

File metadata

  • Download URL: genbase-0.3.0.tar.gz
  • Upload date:
  • Size: 38.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.12.0 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for genbase-0.3.0.tar.gz
Algorithm Hash digest
SHA256 599987504a22c3e6e6386344f75388db678355ec8e45e812ace669446fb76885
MD5 2a4c44187152effe9fb634ed2419bda5
BLAKE2b-256 57d8d9bda3720a3f6d126fb0cfc879fa0b3b85f6c70d99db275d83be08445ec6

See more details on using hashes here.

File details

Details for the file genbase-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: genbase-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 30.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.12.0 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for genbase-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 89b3aacd1be84d0413984cb816bb1a03b754f1d3e3df1f42ecf5e8db048ff640
MD5 211c6e50750951ea707c3f000af49f1f
BLAKE2b-256 a7c46bc5a8f020621f25810fe38ce8e767fc887934a21e6fe215ed30410ca75a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page