Skip to main content

Genderizer tries to infer gender information looking at first name and/or making text analysis

Project description

Genderizer
======================

Genderizer is a language independent module which tries to detect gender by looking given first names and/or analyzing sample texts.

##Installation
You can install this package using the following ```pip``` command:

```sh
$ sudo pip install genderizer
```


##Examples

```python
from genderizer.genderizer import Genderizer

print Genderizer.detect(firstName = 'John')
# >>> male

print Genderizer.detect(firstName = 'Marry')
# >>> female

print Genderizer.detect(firstName = 'mustafa')
# >>> male

print Genderizer.detect(firstName = 'fatma')
# >>> female

print Genderizer.detect(firstName = 'fikret')
# >>> None

print Genderizer.detect(firstName = 'fikret', text='galatasary maçı kaçmaz')
# >>> male

print Genderizer.detect(firstName = 'fikret', text='annemlerle yemek yedik')
# >>> female

print Genderizer.detect(text='askerlik yoklamasını kaçırdım mk')
# >>> male

print Genderizer.detect(text='bana çiçek alan erkek için canım feda')
# >>> female

print Genderizer.detect(firstName='fatma', text='askerlik yoklamasını kaçırdım mk')
# >>> female

print Genderizer.detect(text='futbol sevgi')
# >>> None

print Genderizer.detect(text='lan bi siktir git')
# >>> male

```
***Note***: You may claim that women can say ```lan bi siktir git```, of course. But the probability of being female is less than the probability of being male according the trained data of the classifier.

By the way, in Turkish saying 'lan bi siktir git' makes you quite rude.


## How It Works
Genderizer is a module which tries to detect gender by looking given first names and/or analyzing sample text of a person.

If a first name is definitely used for only one gender, the system will accept this gender and will not make any further analysis. For example, while 'Mustafa', 'Osman', 'Hasan' is used in Turkish only for male; 'Fatma', 'Ceyda', 'Elif' only for female.

When looking at first names does not infer any gender for sure, the system will make text analysis if it is given. For example; 'Ekim', 'Meric', or 'Tümay' is used for both male and female.

The text analysis is the classification of sample texts. It simply try to compute the probability of being male or female mining the sample text. In this system Naive Bayesian Classification is adopted and [naiveBayesClassifier][1] is used.

## How To Improve It
TODO: write a step by step guide

##Preparing Language Dependent Training Sets
TODO: give a few examples

## Customization and Optimization
TODO: Tell what options are there and when to choose
```python
from genderizer.memcachedNamesCollection import MemcachedNamesCollection
from genderizer.mongoNamesCollection import MongoNamesCollection

MongoNamesCollection.mongodbURL = 'mongodb://192.168.1.170'
Genderizer.init(
lang='tr',
namesCollection=MongoNamesCollection
)

#For memcached, you need to setup a memcached server.
MemcachedNamesCollection.memcacheHost = '127.0.0.1:11211'
Genderizer.init(
lang='tr',
namesCollection=MemcachedNamesCollection
)

Genderizer.init(
lang='tr',
namesCollection=NamesCollection,
classifier=Classifier(CachedModel.get('tr'), tokenizer)
)

print Genderizer.detect(firstName = 'fikret', text='annem')

```

## TODO
* inline docs
* unit-tests

## AUTHORS
* Mustafa Atik [@muatik][2]
* Nejdet Yucesoy @nejdetckenobi


[1]: https://github.com/muatik/naive-bayes-classifier
[2]: https://twitter.com/muatik2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genderizer-0.1.2.3.tar.gz (9.4 MB view details)

Uploaded Source

File details

Details for the file genderizer-0.1.2.3.tar.gz.

File metadata

File hashes

Hashes for genderizer-0.1.2.3.tar.gz
Algorithm Hash digest
SHA256 d003c4c0742988d159e17547c554d6c581d5fdf57d34df50bd1985a50bbe9f48
MD5 9a7f1c6ca76990c24caf9dbd04e5faf1
BLAKE2b-256 6425bd9c6b986ead941ed23a81f300506b73d07fc71e479bbbf70d865725f387

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page