Skip to main content

A high-performance, distributed text embedding and reranking system based on FlagEmbedding

Project description

Generic Vectorizer

Generic Vectorizer is a high-performance, distributed text embedding and reranking system built with Python, gRPC, and ZeroMQ. It provides efficient processing of text embedding and reranking tasks using state-of-the-art models.

Table of Contents

[Rest of the README content remains unchanged]

Features

  • Distributed processing of text embedding and reranking tasks
  • Support for multiple embedding and reranking models
  • High-performance communication using gRPC and ZeroMQ
  • Easy scaling of workers for different model types
  • Configurable settings for fine-tuning performance
  • Support for both dense and sparse embeddings
  • Efficient chunking and aggregation of long texts

Architecture

Generic Vectorizer consists of three main components: the gRPC server, the background workers, and the client. Here's a high-level overview of the architecture:

graph TD
    A[Client] -->|gRPC| B[gRPC Server]
    B -->|ZeroMQ| C[Broker]
    C -->|ZeroMQ| D[Embedding Router]
    C -->|ZeroMQ| E[Reranker Router]
    D -->|ZeroMQ| F[Embedding Worker 1]
    D -->|ZeroMQ| G[Embedding Worker 2]
    E -->|ZeroMQ| H[Reranker Worker]
    F -->|Process| I[Embedding Model 1]
    G -->|Process| J[Embedding Model 2]
    H -->|Process| K[Reranking Model]
  1. The client sends requests to the gRPC server.
  2. The gRPC server forwards requests to the broker using ZeroMQ.
  3. The broker distributes tasks to appropriate routers based on the task type.
  4. Routers manage communication with multiple workers.
  5. Workers process tasks using various models (embedding, reranking, etc.).
  6. Results are sent back through the same path to the client.

This architecture allows for efficient distribution of work and easy scaling of workers for different model types.

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/generic-vectorizer.git
cd generic-vectorizer
  1. Install the required dependencies:
pip install -r requirements.txt
  1. Compile the gRPC protobuf files:
./compile_grpc.sh

Usage

AsyncEmbeddingClient

The AsyncEmbeddingClient class provides the following methods:

  • get_embedding(text: str, embed_strategy: str, target_topic: str, chunk_size: int = 512, return_dense: bool = True, return_sparse: bool = False) -> Dict

    Get the embedding for a single text.

  • get_batch_embedding(texts: List[str], embed_strategy: str, target_topic: str, chunk_size: int = 512, return_dense: bool = True, return_sparse: bool = False) -> List[Dict]

    Get embeddings for a batch of texts.

  • get_rerank_scores(query: str, corpus: List[str], target_topic: str, normalize: bool = True) -> List[float]

    Get rerank scores for a query and a list of documents.

Each method returns a dictionary or list of dictionaries containing the requested embeddings or scores.

For more detailed API information, including the structure of the request and response objects, please refer to the source code and comments in the generic_vectorizer/client/client.py file.

Using the Generic Vectorizer Client

Here's a basic example of how to use the Generic Vectorizer client:

import asyncio
from generic_vectorizer.client import AsyncEmbeddingClient

async def main():
    client = AsyncEmbeddingClient(grpc_server_address="localhost:1200")

    # Get embedding for a single text
    embedding = await client.get_embedding(
        text="Your text here",
        target_topic='bge_m3',
        chunk_size=512,
        return_dense=True,
        return_sparse=True
    )
    print("Single text embedding:", embedding)

    # Get embeddings for a batch of texts
    batch_embeddings = await client.get_batch_embedding(
        texts=["Text 1", "Text 2", "Text 3"],
        target_topic='bge_m3',
        chunk_size=512,
        return_dense=True,
        return_sparse=True
    )
    print("Batch embeddings:", batch_embeddings)

    # Get rerank scores
    rerank_scores = await client.get_rerank_scores(
        query="Your query here",
        corpus=["Document 1", "Document 2", "Document 3"],
        target_topic='bge_reranker',
        normalize=True
    )
    print("Rerank scores:", rerank_scores)

asyncio.run(main())

Configuration of the server

Generic Vectorizer can be configured using the EmbedderModelConfig class. Here's an example configuration:

from generic_vectorizer import Vectorizer
from generic_vectorizer.typing import EmbedderModelConfig, EmbedderModelType

embedder_model_configs = [
    EmbedderModelConfig(
        embedder_model_type=EmbedderModelType.BGE_M3_EMBEDDING_MODEL,
        target_topic='bge_m3',
        nb_instances=3,
        options={
            'model_name_or_path': 'BAAI/bge-m3',
            'device': 'cuda:0'
        }
    ),
    EmbedderModelConfig(
        embedder_model_type=EmbedderModelType.BGE_RERANKER_MODEL,
        target_topic='bge_reranker',
        nb_instances=1,
        options={
            'model_name_or_path': 'BAAI/bge-reranker-v2-m3',
            'device': 'cpu'
        },
        zmq_tcp_address='tcp://*:8500'
    )
]

vectorizer = Vectorizer(
    grpc_server_address='[::]:1200', 
    embedder_model_configs=embedder_model_configs,
    max_concurrent_requests=1024,
    request_timeout=30
)
vectorizer.listen()

Launching the Server

Generic Vectorizer now supports configuration via a JSON file. This allows for easy customization of server settings and model configurations.

Configuration File Structure

Create a config.json file with the following structure:

{
  "grpc_server_address": "[::]:5000",
  "max_concurrent_requests": 1024,
  "request_timeout": 30,
  "embedder_model_configs": [
    {
      "embedder_model_type": "BGE_M3_EMBEDDING_MODEL",
      "target_topic": "bge_m3",
      "nb_instances": 3,
      "options": {
        "model_name_or_path": "BAAI/bge-m3",
        "device": "cuda:0"
      }
    },
    {
      "embedder_model_type": "BGE_RERANKER_MODEL",
      "target_topic": "bge_reranker",
      "nb_instances": 1,
      "options": {
        "model_name_or_path": "BAAI/bge-reranker-v2-m3",
        "device": "cpu"
      },
      "zmq_tcp_address": "tcp://*:8500"
    }
  ]
}

Launching the Server

To launch the Generic Vectorizer server with your configuration:

python -m generic_vectorizer launch-engine --config path/to/your/config.json

This command will read the configuration from the specified JSON file and start the server with the provided settings.

Docker Support

Generic Vectorizer can be run in Docker containers, with support for both GPU and CPU environments.

Building Docker Images

  1. For GPU support:

    docker build -f Dockerfile.gpu -t generic-vectorizer:gpu .
    
  2. For CPU-only:

    docker build -f Dockerfile.cpu -t generic-vectorizer:cpu .
    

Running Docker Containers

To run the Generic Vectorizer in a Docker container, you need to mount your configuration file as a volume.

  1. For GPU support:

    docker run --gpus all -v /path/to/your/config.json:/home/solver/config.json -p 5000:5000 generic-vectorizer:gpu launch-engine --config /home/solver/config.json
    
  2. For CPU-only:

    docker run -v /path/to/your/config.json:/home/solver/config.json -p 5000:5000 generic-vectorizer:cpu launch-engine --config /home/solver/config.json
    

Replace /path/to/your/config.json with the actual path to your configuration file on the host machine.

Note: The GPU version requires the NVIDIA Container Toolkit to be installed on your host system.

Docker Compose (Optional)

For easier management, you can use Docker Compose. Create a docker-compose.yml file:

version: '3'
services:
  generic-vectorizer:
    image: generic-vectorizer:gpu  # or :cpu for CPU-only version
    ports:
      - "5000:5000"
    volumes:
      - ./config.json:/home/solver/config.json
    command: launch-engine --config /home/solver/config.json
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]

Then run:

docker-compose up

This setup assumes your config.json is in the same directory as the docker-compose.yml file.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

generic_vectorizer-0.1.0.tar.gz (24.1 kB view details)

Uploaded Source

Built Distribution

generic_vectorizer-0.1.0-py3-none-any.whl (25.1 kB view details)

Uploaded Python 3

File details

Details for the file generic_vectorizer-0.1.0.tar.gz.

File metadata

  • Download URL: generic_vectorizer-0.1.0.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for generic_vectorizer-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5c0fca47504cf8d7e4f8fd26c626f1e4efb4a0836722e3202f60b50da5bb5906
MD5 e5c0aee69c6ab8a902a9b612433b87cb
BLAKE2b-256 ea65a027dff843d691e06941b72de288603e3edb7382877b83bb1a5cc6e57fab

See more details on using hashes here.

File details

Details for the file generic_vectorizer-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for generic_vectorizer-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6333d0f2d91c5ece7cb0ef4a4872e877699425faa01dd6faec772aee88002e14
MD5 ff4213d1e26dd2d8a73a9b96dcbd0c30
BLAKE2b-256 89a6019b6b17e275fd011ccf410f2bd683c55e099d6183d834e0f90fbd73f0e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page