Skip to main content

GenET: Genome Editing Toolkit

Project description

Genome Editing Toolkit
Since 2022. 08. 19.

Python PyPI version Slack docs License

Welcome to GenET

GenET (Genome Editing Toolkit) is a library of various python functions for the purpose of analyzing and evaluating data from genome editing experiments. GenET is still in its early stages of development and continue to improve and expand. Currently planned functions include guideRNA design, saturation library design, deep sequenced data analysis, and guide RNA activity prediction.

Please see the documentation.

Installation

1/ Create virtual environment and install genet

# Create virtual env for genet. (python 3.8 was tested)
conda create -n genet python=3.8
conda activate genet

# Install genet ( >= ver. 0.7.0)
pip install genet

2/ Install Pytorch (v1.11.0 was tested)

Pytorch ver.2 is not compatible yet.

# For OSX (MacOS)
pip install torch==1.11.0

# For Linux and Windows
# CUDA 11.3 (choose version degending on your GPU)
pip install torch==1.11.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

# CPU only
pip install torch==1.11.0+cpu --extra-index-url https://download.pytorch.org/whl/cpu

3/ Install ViennaRNA

# install ViennaRNA package for prediction module
conda install viennarna

Who should use GenET?

GenET was developed for anyone interested in the field of genome editing. Especially, Genet can provide aid to those with the following objectives.:

  • Develop a quick and easy to design an genome editing experiment for a specific gene.
  • Perform genome editing analysis based on sequening data
  • Predict the activtiy of specific guideRNAs or all guideRNAs designed for editing a specific product.

Example: Prediction of prime editing efficiency by DeepPrime

DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing (Yu et al. Cell 2023). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch.

from genet.predict import DeepPrime

seq_wt   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'

pegrna = DeepPrime('Test', seq_wt, seq_ed, edit_type='sub', edit_len=1)

# check designed pegRNAs
>>> pegrna.features
ID WT74_On Edited74_On PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len type_sub type_ins type_del Tm1 Tm2 Tm2new Tm3 Tm4 TmD nGCcnt1 nGCcnt2 nGCcnt3 fGCcont1 fGCcont2 fGCcont3 MFE3 MFE4 DeepSpCas9_score
0 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxxCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 7 35 42 34 1 1 1 0 0 16.19097 62.1654 62.1654 -277.939 58.22525 -340.105 5 16 21 71.42857 45.71429 50 -10.4 -0.6 45.96754
1 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxCCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 8 35 43 34 1 1 1 0 0 30.19954 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 75 45.71429 51.16279 -10.4 -0.6 45.96754
2 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 9 35 44 34 1 1 1 0 0 33.78395 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 66.66667 45.71429 50 -10.4 -0.6 45.96754
3 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxCACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 10 35 45 34 1 1 1 0 0 38.51415 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 70 45.71429 51.11111 -10.4 -0.6 45.96754
4 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 11 35 46 34 1 1 1 0 0 40.87411 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 63.63636 45.71429 50 -10.4 -0.6 45.96754
5 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 12 35 47 34 1 1 1 0 0 40.07098 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 58.33333 45.71429 48.93617 -10.4 -0.6 45.96754

Next, select model PE system and run DeepPrime

pe2max_output = pegrna.predict(pe_system='PE2max', cell_type='HEK293T')

>>> pe2max_output.head()
Target Spacer RT-PBS PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len PE2max_score
0 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG 7 35 42 34 1 1 0.904907
1 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG 8 35 43 34 1 1 2.377118
2 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT 9 35 44 34 1 1 2.613841
3 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG 10 35 45 34 1 1 3.643573
4 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT 11 35 46 34 1 1 3.770234

The previous function, pe_score(), is still available for use. However, please note that this function will be deprecated in the near future.

from genet import predict as prd

# Place WT sequence and Edited sequence information, respectively.
# And select the edit type you want to make and put it in.
#Input seq: 60bp 5' context + 1bp center + 60bp 3' context (total 121bp)

seq_wt   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
alt_type = 'sub1'

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type)
df_pe.head()
Target Spacer RT-PBS PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len PE2max_score
0 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG 7 35 42 34 1 1 0.904907
1 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG 8 35 43 34 1 1 2.377118
2 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT 9 35 44 34 1 1 2.613841
3 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG 10 35 45 34 1 1 3.643573
4 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT 11 35 46 34 1 1 3.770234

It is also possible to predict other cell lines (A549, DLD1...) and PE systems (PE2max, PE4max...).

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type, sID='MyGene', pe_system='PE4max', cell_type='A549')

Please send all comments and questions to gsyu93@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genet-0.13.3.tar.gz (75.0 kB view details)

Uploaded Source

Built Distribution

genet-0.13.3-py3-none-any.whl (86.9 kB view details)

Uploaded Python 3

File details

Details for the file genet-0.13.3.tar.gz.

File metadata

  • Download URL: genet-0.13.3.tar.gz
  • Upload date:
  • Size: 75.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.12

File hashes

Hashes for genet-0.13.3.tar.gz
Algorithm Hash digest
SHA256 6b13c92ca7c29925dcca328ae1bc9a61261cee72b1d107e5e5fc641ae775036d
MD5 b7ca102113fa56e9046cae537405eab0
BLAKE2b-256 5b76a66e71eeefaaf39a2226e7b5ed40113fde7b846ce184a26314b277cf5159

See more details on using hashes here.

File details

Details for the file genet-0.13.3-py3-none-any.whl.

File metadata

  • Download URL: genet-0.13.3-py3-none-any.whl
  • Upload date:
  • Size: 86.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.12

File hashes

Hashes for genet-0.13.3-py3-none-any.whl
Algorithm Hash digest
SHA256 79438fb491f63f63b28734f11214ab48ab3ff8dfb5ff1c0605fc45a093f1b8c4
MD5 4e1ddeedd6eda4dad84d1c1242752737
BLAKE2b-256 8e4b2dbfd2515ec5273e12d761cd75850b49a33764bf63ed684e38df56a49d60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page