Skip to main content

GeneticPy is an optimizer that uses a genetic algorithm to quickly search through custom parameter spaces for optimal solutions.

Project description

GeneticPy

Build Status codecov PyPI version PyPI pyversions Downloads

GeneticPy is an optimizer that uses a genetic algorithm to quickly search through custom parameter spaces for optimal solutions.

Installation

GeneticPy requires Python 3.7+

pip install geneticpy

Optimize Example:

A brief example to get you started is included below:

import geneticpy

def loss_function(params):
  if params['type'] == 'add':
    return params['x'] + params['y']
  elif params['type'] == 'multiply':
    return params['x'] * params['y']

param_space = {'type': geneticpy.ChoiceDistribution(choice_list=['add', 'multiply']),
               'x': geneticpy.UniformDistribution(low=5, high=10, q=1),
               'y': geneticpy.GaussianDistribution(mean=0, standard_deviation=1)}

results = geneticpy.optimize(loss_function, param_space, size=200, generation_count=500, verbose=True)
best_params = results['top_params']
loss = results['top_score']
total_time = results['total_time']

GeneticSearchCV Example:

You can use the GeneticSearchCV class as a drop-in replacement for Scikit-Learn's GridSearchCV. This allows for faster and more complete optimization of your hyperparameters when using Scikit-Learn estimators and/or pipelines.

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

from geneticpy import GeneticSearchCV, ChoiceDistribution, LogNormalDistribution, UniformDistribution


# Define a pipeline to search for the best combination of PCA truncation
# and classifier regularization.
pca = PCA()
# set the tolerance to a large value to make the example faster
logistic = LogisticRegression(max_iter=10000, tol=0.1, solver='saga')
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

X_digits, y_digits = datasets.load_digits(return_X_y=True)

# Parameters of pipelines can be set using ‘__’ separated parameter names:
param_grid = {
    'pca__n_components': UniformDistribution(low=5, high=64, q=1),
    'logistic__C': LogNormalDistribution(mean=1, sigma=0.5, low=0.001, high=2),
    'logistic__penalty': ChoiceDistribution(choice_list=['l1', 'l2'])
}
search = GeneticSearchCV(pipe, param_grid)
search.fit(X_digits, y_digits)
print("Best parameter (CV score=%0.3f):" % search.best_score_)
print(search.best_params_)

PyPi Project

https://pypi.org/project/geneticpy/

Contact

Please feel free to email me at brandonschabell@gmail.com with any questions or feedback.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geneticpy-1.3.0.tar.gz (11.3 kB view hashes)

Uploaded source

Built Distribution

geneticpy-1.3.0-py3-none-any.whl (12.6 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page