Genomap converts tabular gene expression data into spatially meaningful images.
Project description
Genomap creates images from gene expression data
Genomap is an entropy-based cartography strategy to contrive the high dimensional gene expression data into a configured image format with explicit integration of the genomic interactions. This unique cartography casts the gene-gene interactions into a spatial configuration and enables us to extract the deep genomic interaction features and discover underlying discriminative patterns of the data. For a wide variety of applications (cell clustering and recognition, gene signature extraction, single-cell data integration, cellular trajectory analysis, dimensionality reduction, and visualization), genomap drastically improves the accuracy of data analyses as compared to state-of-the-art techniques.
Required packages
scipy, scikit-learn, pot, numpy
If you face any issues with packages, please check the environment section of our Code-Ocean capsule (https://doi.org/10.24433/CO.0640398.v1), where you can check the package versions.
How to use genomap
The easiest way to start with genomap is to install it from pypi using
pip install genomap
The data should be in cell (row) x gene (column) format. Genomap construction needs only one parameter: the size of the genomap (row and column number). The row and column number can be any number starting from 1. You can create square or rectangular genomaps. The number of genes in your dataset should be less than or equal to the number of pixels in the genomap. Genomap construction is very fast and you should get the genomaps within a few seconds.
Sample data
To run the example codes below, you will need to download data files from here.
Example codes
Example 1 - Construct a genomap
import pandas as pd # Please install pandas and matplotlib before you run this example
import matplotlib.pyplot as plt
import scipy
import genomap as gp
data = pd.read_csv('TM_data.csv', header=None, delim_whitespace=False)
colNum=31 # Column number of genomap
rowNum=31 # Row number of genomap
dataNorm=scipy.stats.zscore(data,axis=0,ddof=1) # Normalization of the data
genoMaps=gp.construct_genomap(dataNorm,rowNum,colNum) # Construction of genomaps
findI=genoMaps[0,:,:,:]
plt.figure(1) # Plot the first genomap
plt.imshow(findI, origin = 'lower', extent = [0, 10, 0, 10], aspect = 1)
plt.title('Genomap of a cell from TM dataset')
Example 2 - Try out genoVis, genoTraj and genoMOI
import scipy.io as sio
import numpy as np
from genomap.genoVis import compute_genoVis
from genomap.genoTraj import compute_genoTraj
from genomap.genoMOI import compute_genoMOI
dx = sio.loadmat('reducedData_divseq.mat')
data=dx['X']
gt_data = sio.loadmat('GT_divseq.mat')
y = np.squeeze(gt_data['GT'])
n_clusters = len(np.unique(y))
resVis=compute_genoVis(data,n_clusters=n_clusters, colNum=33,rowNum=33)
dx = sio.loadmat('organoidData.mat')
data=dx['X3']
gt_data = sio.loadmat('cellsPsudo.mat')
Y_time = np.squeeze(gt_data['newGT'])
outGenoTraj=compute_genoTraj(data)
dx = sio.loadmat('dataBaronX.mat')
data=dx['dataBaron']
dx = sio.loadmat('dataMuraroX.mat')
data2=dx['dataMuraro']
dx = sio.loadmat('dataScapleX.mat')
data3=dx['dataScaple']
dx = sio.loadmat('dataWangX.mat')
data4=dx['dataWang']
dx = sio.loadmat('dataXinX.mat')
data5=dx['dataXin']
resVis=compute_genoMOI(data, data2, data3, data4, data5, colNum=44, rowNum=44)
Citation
If you use the genomap code, please cite our Nature Communications paper: https://www.nature.com/articles/s41467-023-36383-6
Islam, M.T., Xing, L. Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. Nat Commun 14, 679 (2023). https://doi.org/10.1038/s41467-023-36383-6
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file genomap-1.0.9.tar.gz
.
File metadata
- Download URL: genomap-1.0.9.tar.gz
- Upload date:
- Size: 44.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa9499fc48728eca562c96200fa9762bb5d43d7257354de7e0f5fe0feacca8b3 |
|
MD5 | e4673d22713b71c85dc49dfe85b19ab2 |
|
BLAKE2b-256 | 5e89fa65ccf48f85549199758a8d055a951e0b746d89419dab81335351b99d12 |
File details
Details for the file genomap-1.0.9-py3-none-any.whl
.
File metadata
- Download URL: genomap-1.0.9-py3-none-any.whl
- Upload date:
- Size: 49.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb740ad7b35c4fd883931d34f7b63a3ba3ffc4eda8fc786f215ba3217411323c |
|
MD5 | 8e5e3b52e6c3d63609ba94f69c1e5bff |
|
BLAKE2b-256 | 1534373840acf8e8146c20b307d69392eb1f510cae28aa2e789bc07e2fb36ea9 |