Skip to main content

Genomes in Python

Project description

# genomepy

[![bioconda-badge](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io)
[![PyPI version](https://badge.fury.io/py/genomepy.svg)](https://badge.fury.io/py/genomepy)
[![Build Status](https://travis-ci.org/simonvh/genomepy.svg?branch=master)](https://travis-ci.org/simonvh/genomepy)
[![Code Health](https://landscape.io/github/simonvh/genomepy/master/landscape.svg?style=flat)](https://landscape.io/github/simonvh/genomepy/master)

[![status](http://joss.theoj.org/papers/df434a15edd00c8c2f4076668575d1cd/status.svg)](http://joss.theoj.org/papers/df434a15edd00c8c2f4076668575d1cd)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.831969.svg)](https://doi.org/10.5281/zenodo.831969)

Easily install and use genomes in Python and elsewhere!

The goal is to have a _simple_ and _straightforward_ way to download and use genomic sequences.
Currently, genomepy supports UCSC, Ensembl and NCBI.

[![asciicast](https://asciinema.org/a/eZttBuf5ly0AnjFVBiEIybbjS.png)](https://asciinema.org/a/eZttBuf5ly0AnjFVBiEIybbjS)

## Installation

Genomepy works with Python 2.7 and Python 3.4+.
You can install it via [bioconda](https://bioconda.github.io/):

```
$ conda install genomepy
```

Or via pip:

```
$ pip install genomepy
```

If you install via pip, you will have to install some dependencies, only if
you want to use the annotation download feature.
You will have to install the following
utilities and make sure they are in your PATH:

* `genePredToBed`
* `genePredToGtf`
* `bedToGenePred`
* `gtfToGenePred`

You can find the binaries [here](http://hgdownload.cse.ucsc.edu/admin/exe/).

## Plugins and indexing

By default `genomepy` generates a file with chromosome sizes and a BED file with
gap locations (Ns in the sequence). However, you can also create indices for
some widely using aligners. Currently, genomepy supports:

* [bowtie2](http://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
* [bwa](http://bio-bwa.sourceforge.net/)
* [gmap](http://research-pub.gene.com/gmap/)
* [hisat2](https://ccb.jhu.edu/software/hisat2/index.shtml)
* [minimap2](https://github.com/lh3/minimap2)

Note 1: these programs are not installed by genomepy and need to be
installed seperately for the indexing to work.

Note 2: the index is based on the genome, annotation (splice sites) is currently
not taken into account.

You can configure the index creation using the `genomepy plugin` command (see below)

## Configuration

By default genomes will be saved in `~/.local/share/genomes`.

To change the configuration, generate a personal config file:

```
$ genomepy config generate
Created config file /home/simon/.config/genomepy/genomepy.yaml
```

To set the default genome directory to `/data/genomes` for instance, edit `~/.config/genomepy/genomepy.yaml` and change the following line:

```
genome_dir: ~/.local/share/genomes/
```

to:

```
genome_dir: /data/genomes
```

The genome directory can also be explicitly specified in both the Python API as well as on the command-line.

## Usage

### Command line

```
Usage: genomepy [OPTIONS] COMMAND [ARGS]...

Options:
--version Show the version and exit.
-h, --help Show this message and exit.

Commands:
config manage configuration
genomes list available genomes
install install genome
plugin manage plugins
providers list available providers
search search for genomes
```

#### Install a genome.

The most important command. The most simple form:

```
$ genomepy install hg38 UCSC
downloading...
done...
name: hg38
fasta: /data/genomes/hg38/hg38.fa
```

Here, genomes are downloaded to the directory specified in the config file.
To choose a different directory, use the `-g` option.

```
$ genomepy install sacCer3 UCSC -g ~/genomes/
downloading from http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/chromFa.tar.gz...
done...
name: sacCer3
local name: sacCer3
fasta: /home/simon/genomes/sacCer3/sacCer3.fa
```

You can use a regular expression to filter for matching sequences
(or non-matching sequences by using the `--no-match` option). For instance,
the following command downloads hg38 and saves only the major chromosomes:

```
$ genomepy install hg38 UCSC -r 'chr[0-9XY]+$'
downloading from http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz...
done...
name: hg38
local name: hg38
fasta: /data/genomes/hg38/hg38.fa
$ grep ">" /data/genomes/hg38/hg38.fa
>chr1
>chr10
>chr11
>chr12
>chr13
>chr14
>chr15
>chr16
>chr17
>chr18
>chr19
>chr2
>chr20
>chr21
>chr22
>chr3
>chr4
>chr5
>chr6
>chr7
>chr8
>chr9
>chrX
>chrY
```

By default, sequences are soft-masked. Use `-m hard` for hard masking.

The chromosome sizes are saved in file called `<genome_name>.fa.sizes`.

For genomes from UCSC and Ensembl, you can choose to download gene annotation
files with the `--annotation` option.
These will be saved in BED and GTF format.

```
$ genomepy install hg38 UCSC --annotation
```

Finally, in the spirit of reproducibility all selected options are stored in a `README.txt`.
This includes the original name and download location.

#### Manage plugins.

Use `genomepy plugin list` to view the available plugins.

```
$ genomepy plugin list
plugin enabled
bowtie2
bwa
gaps *
gmap
hisat2
minimap2
sizes *
```

Enable plugins as follows:

```
$ genomepy plugin enable bwa hisat2
Enabled plugins: bwa, gaps, hisat2, sizes
```

And disable like this:
```
$ genomepy plugin disable bwa
Enabled plugins: gaps, hisat2, sizes
```

#### Search for a genome.

```
$ genomepy search Xenopus
NCBI Xenopus_tropicalis_v9.1 Xenopus tropicalis; DOE Joint Genome Institute
NCBI ViralProj30173 Xenopus laevis endogenous retrovirus Xen1;
NCBI Xenopus_laevis_v2 Xenopus laevis; International Xenopus Sequencing Consortium
NCBI v4.2 Xenopus tropicalis; DOE Joint Genome Institute
NCBI Xtropicalis_v7 Xenopus tropicalis; DOE Joint Genome Institute
Ensembl JGI 4.2 Xenopus
```

Only search a specific provider:

```
$ genomepy search tropicalis -p UCSC
UCSC xenTro7 X. tropicalis Sep. 2012 (JGI 7.0/xenTro7) Genome at UCSC
UCSC xenTro3 X. tropicalis Nov. 2009 (JGI 4.2/xenTro3) Genome at UCSC
UCSC xenTro2 X. tropicalis Aug. 2005 (JGI 4.1/xenTro2) Genome at UCSC
UCSC xenTro1 X. tropicalis Oct. 2004 (JGI 3.0/xenTro1) Genome at UCSC
```

Note that searching doesn't work flawlessly, so try a few variations if
you don't get any results.
Search is case-insensitive.

#### List available providers

```
$ genomepy providers
Ensembl
UCSC
NCBI
```

#### List available genomes

You can constrain the genome list by using the `-p` option to search only a
specific provider.

```
$ genomepy genomes -p UCSC
UCSC hg38 Human Dec. 2013 (GRCh38/hg38) Genome at UCSC
UCSC hg19 Human Feb. 2009 (GRCh37/hg19) Genome at UCSC
UCSC hg18 Human Mar. 2006 (NCBI36/hg18) Genome at UCSC
...
UCSC danRer4 Zebrafish Mar. 2006 (Zv6/danRer4) Genome at UCSC
UCSC danRer3 Zebrafish May 2005 (Zv5/danRer3) Genome at UCSC
```

#### Manage configuration

List the current configuration file that genomepy uses:

```
$ genomepy config file
/home/simon/.config/genomepy/genomepy.yaml
```

To show the contents of the config file:

```
$ genomepy config show
# Directory were downloaded genomes will be stored
genome_dir: ~/.local/share/genomes/

plugin:
- gaps
- sizes
```

To generate a personal configuration file (existing file will be overwritten):

```
$ genomepy config generate
Created config file /home/simon/.config/genomepy/genomepy.yaml
```

#### Local cache.

Note that the first time you run `genomepy search` or `list` the command will take a long time
as the genome lists have to be downloaded.
The lists are cached locally, which will save time later. The cached files are stored in
`~/.cache/genomepy` and expire after 7 days. You can also delete this directory to clean the
cache.

### From Python

```python
>>> import genomepy
>>> for row in genomepy.search("GRCh38"):
... print("\t".join(row))
...
UCSC hg38 Human Dec. 2013 (GRCh38/hg38) Genome at UCSC
NCBI GRCh38.p10 Homo sapiens; Genome Reference Consortium
NCBI GRCh38 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p1 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p2 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p3 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p4 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p5 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p6 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p7 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p8 Homo sapiens; Genome Reference Consortium
NCBI GRCh38.p9 Homo sapiens; Genome Reference Consortium
Ensembl GRCh38.p10 Human
>>> genomepy.install_genome("hg38", "UCSC", genome_dir="/data/genomes")
downloading...
done...
name: hg38
fasta: /data/genomes/hg38/hg38.fa
>>> g = genomepy.Genome("hg38", genome_dir="/data/genomes")
>>> g["chr6"][166502000:166503000]
tgtatggtccctagaggggccagagtcacagagatggaaagtggatggcgggtgccgggggctggggagctactgtgcagggggacagagctttagttctgcaagatgaaacagttctggagatggacggtggggatgggggcccagcaatgggaacgtgcttaatgccactgaactgggcacttaaacgtggtgaaaactgtaaaagtcatgtgtatttttctacaattaaaaaaaATCTGCCACAGAGTTAAAAAAATAACCACTATTTTCTGGAAATGGGAAGGAAAAGTTACAGCATGTAATTAAGATGACAATTTATAATGAACAAGGCAAATCTTTTCATCTTTGCCTTTTGGGCATATTCAATCTTTGCCCAGAATTAAGCACCTTTCAAGATTAATTCTCTAATAATTCTAGTTGAACAACACAACCTTTTCCTTCAAGCTTGCAATTAAATAAGGCTATTTTTAGCTGTAAGGATCACGCTGACCTTCAGGAGCAATGAGAACCGGCACTCCCGGCCTGAGTGGATGCACGGGGAGTGTGTCTAACACACAGGCGTCAACAGCCAGGGCCGCACGAGGAGGAGGAGTGGCAACGTCCACACAGACTCACAACACGGCACTCCGACTTGGAGGGTAATTAATACCAGGTTAACTTCTGGGATGACCTTGGCAACGACCCAAGGTGACAGGCCAGGCTCTGCAATCACCTCCCAATTAAGGAGAGGCGAAAGGGGACTCCCAGGGCTCAGAGCACCACGGGGTTCTAGGTCAGACCCACTTTGAAATGGAAATCTGGCCTTGTGCTGCTGCTCTTGTGGGGAGACAGCAGCTGCGGAGGCTGCTCTCTTCATGGGATTACTCTGGATAAAGTCTTTTTTGATTCTACgttgagcatcccttatctgaaatgcctgaaaccggaagtgtttaggatttggggattttgcaatatttacttatatataatgagatatcttggagatgggccacaa
```

The `genomepy.Genome()` method returns a Genome object. This has all the
functionality of a `pyfaidx.Fasta` object,
see the [documentation](https://github.com/mdshw5/pyfaidx) for more examples on how to use this.

## Known issues

There might be issues with specific genome sequences.
Sadly, not everything (naming, structure, filenames) is always consistent on the provider end.
Let me know if you encounter issues with certain downloads.

## Todo

* Linking genomes to NCBI taxonomy ID
* Optionally: Ensembl bacteria (although there might be better options specifically for bacterial sequences)

## Citation

If you use genomepy in your research, please cite it: [10.21105/joss.00320](http://dx.doi.org/10.21105/joss.00320).


## Getting help

If you want to report a bug or issue, or have problems with installing or running the software please create [a new issue](https://github.com/simonvh/genomepy/issues). This is the preferred way of getting support. Alternatively, you can [mail me](mailto:simon.vanheeringen@gmail.com).

## Contributing

Contributions welcome! Send me a pull request or get in [touch](mailto:simon.vanheeringen@gmail.com).

## License

This module is licensed under the terms of the [MIT license](https://opensource.org/licenses/MIT).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genomepy-0.5.2.tar.gz (21.4 kB view details)

Uploaded Source

File details

Details for the file genomepy-0.5.2.tar.gz.

File metadata

  • Download URL: genomepy-0.5.2.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.9.1 pkginfo/1.4.1 requests/2.19.1 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/2.7.12

File hashes

Hashes for genomepy-0.5.2.tar.gz
Algorithm Hash digest
SHA256 fa78b8d53b952ff200a6b7f7ed28aae64d57ef2a99bcb6df1bb4b16bef403895
MD5 8e60be6722f73647cdb476b10878f0ac
BLAKE2b-256 2f8448ab53e0ee9aada69d49305958acd9366c242af0ec41dab7a14c2496f3ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page