Skip to main content

Comprehensive genetic risk assessment

Project description

GenRisk

GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes within a phenotype in a population

Citation

Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651–2653, https://doi.org/10.1093/bioinformatics/btac152

Requirements

Installation

Option 1: The latest release of GenRisk can be installed on python3+ with:

$ pip install genrisk

Option2: you can also install the package with the latest updates directly from GitHub <https://github.com/AldisiRana/GenRisk>_ with:

$ pip install git+https://github.com/AldisiRana/GenRisk.git

Usage

Score genes

This command calculate the gene-based scores for a given dataset.

It requires plink binary files, and an annotations file that contains all information needed for the score computation.

$ genrisk score-genes -a ../toy_example/toy_annotations.tsv -b ../toy_example/toy_data.bim -o toy_genes_scores_test_mod.tsv -t toy_vcf_scoring -v SNP -f gnomadAF -g gene -l ALT -d CADD_raw 
  • For further CLI options and parameters use --help

Calculate p-values

This function calculates the p-values across the genes between two given groups

$ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -t linear -c quan -a fdr_bh -v sex,age,bmi 
  • For further CLI options and parameters use --help

Visualize

Visualize manhatten plot and qqplot for the data.

$ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt --genescol-1 genes
  • For further CLI options and parameters use --help

Create model

Create a prediction model (classifier or regressor) with given dataset

$ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize
  • For further CLI options and parameters use --help

Test model

Evaluate a prediction model with a given dataset.

$ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor 
--labels-col target --samples-col IID
  • For further CLI options and parameters use --help

Get PRS scores

This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset. Note: This command is interactive.

$ genrisk get-prs
  • For further CLI options and parameters use --help

Get GBRS

Calculate gene-based risk scores for individuals. If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.

$genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
  • For further CLI options and parameters use --help

Contact

If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email: aldisi.rana@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GenRisk-0.3.2.tar.gz (41.9 MB view details)

Uploaded Source

Built Distribution

GenRisk-0.3.2-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file GenRisk-0.3.2.tar.gz.

File metadata

  • Download URL: GenRisk-0.3.2.tar.gz
  • Upload date:
  • Size: 41.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/8.4.0 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.5 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for GenRisk-0.3.2.tar.gz
Algorithm Hash digest
SHA256 ac267389c22b0f12583a5e96e55abeec9e101b4fb0cabbccdf006c050bcd13ad
MD5 aa3e699224b3c584626bdd8ed95aa615
BLAKE2b-256 c15ada5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79

See more details on using hashes here.

File details

Details for the file GenRisk-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: GenRisk-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/8.4.0 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.5 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for GenRisk-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d1b5353f45310872fce352b31a0a55aa62631f57e7a47fb5434d34884c8745b9
MD5 2d4ab4c5ba37d26c35edc94ff30f3e24
BLAKE2b-256 c1ebd6141bcebd6c4cd3763bc873fe2a27ccc9d3d9f635e874f95fff3373f53f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page