Allows you to run a test with multiple data sets
Project description
Genty, pronounced “gen-tee”, stands for “generate tests”. It promotes generative testing, where a single test can execute over a variety of input. Genty makes this a breeze.
For example, consider a file sample.py containing both the code under test and the tests:
from box.test.genty import genty, genty_repeat, genty_dataset
from unittest import TestCase
# Here's the class under test
class MyClass(object):
def add_one(self, x):
return x + 1
# Here's the test code
@genty
class MyClassTests(TestCase):
@genty_dataset(
(0, 1),
(100000, 100001),
)
def test_add_one(self, value, expected_result):
actual_result = MyClass().add_one(value)
self.assertEqual(expected_result, actual_result)
Running the MyClassTests using the default unittest runner
$ python -m unittest -v sample
test_add_one(0, 1) (sample.MyClassTests) ... ok
test_add_one(100000, 100001) (sample.MyClassTests) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
Instead of having to write multiple independent tests for various test cases, code can be refactored and parametrized using genty!
It produces readable tests. It produces maintainable tests. It produces expressive tests.
Another option is running the same test multiple times. This is useful in stress tests or when excerising code looking for race conditions. This particular test
@genty_repeat(3)
def test_adding_one_to_zero(self):
self.assertEqual(1, MyClass().add_one(0))
would be run 3 times, producing output like
$ python -m unittest -v sample
test_adding_one() iteration_1 (sample.MyClassTests) ... ok
test_adding_one() iteration_2 (sample.MyClassTests) ... ok
test_adding_one() iteration_3 (sample.MyClassTests) ... ok
----------------------------------------------------------------------
Ran 3 tests in 0.001s
OK
The 2 techniques can be combined:
@genty_repeat(2)
@genty_dataset(
(0, 1),
(100000, 100001),
)
def test_add_one(self, value, expected_result):
actual_result = MyClass().add_one(value)
self.assertEqual(expected_result, actual_result)
There are more options to explore including naming your datasets and genty_args.
@genty_dataset(
default_case=(0, 1),
limit_case=(999, 1000),
error_case=genty_args(-1, -1, is_something=False),
)
def test_complex(self, value1, value2, optional_value=None, is_something=True):
...
would run 3 tests, producing output like
$ python -m unittest -v sample
test_complex(default_case) (sample.MyClassTests) ... ok
test_complex(limit_case) (sample.MyClassTests) ... ok
test_complex(error_case) (sample.MyClassTests) ... ok
----------------------------------------------------------------------
Ran 3 tests in 0.003s
OK
genty_args allow you to define the params to the test method as if it were being called directly. Thus for complex tests with lots of parameters, one can take advantage of default values and named parameters.
Enjoy!
Installation
To install, simply:
pip install genty
Contributing
See CONTRIBUTING.
Setup
Create a virtual environment and install packages -
mkvirtualenv genty
pip install -r requirements-dev.txt
Testing
Run all tests using -
tox
The tox tests include code style checks via pep8 and pylint.
Copyright and License
Copyright 2014 Box, Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.