Skip to main content

Vietnamese tokenization, preprocess and models NLP

Project description

Genz Tokenize

Installation:

pip install genz-tokenize

Using for tokenize

    >>> from genz_tokenize import Tokenize
    # using vocab from lib
    >>> tokenize = Tokenize()
    >>> print(tokenize('sinh_viên công_nghệ', 'hello', max_len = 10, padding = True, truncation = True))
    # {'input_ids': [1, 770, 1444, 2, 2, 30469, 2, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'sequence_id': [None, 0, 0, None, None, 1, None]}

    >>> print(tokenize.decode([1, 770, 2]))
    # <s> sinh_viên </s>

    # from your vocab
    >>> tokenize = Tokenize.fromFile('vocab.txt','bpe.codes')

Using bert tokenize inheritance from PreTrainedTokenizer Transformers

    >>> from genz_tokenize import TokenizeForBert
    # Using vocab from lib
    >>> tokenize = TokenizeForBert()
    >>> print(tokenize(['sinh_viên công_nghệ', 'hello'], max_length=5, padding='max_length',truncation=True))
    # {'input_ids': [[1, 770, 1444, 2, 0], [1, 30469, 2, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 0], [1, 1, 1, 0, 0]]}

    # Using your vocab
    >>> tokenize = TokenizeForBert.fromFile('vocab.txt','bpe.codes')

Embedding matrix from fasttext

    >>> from genz_tokenize import get_embedding_matrix
    >>> embedding_matrix = get_embedding_matrix()

Preprocessing data

    >>> from genz_tokenize.preprocess import remove_punctuations,  convert_unicode, remove_emoji, vncore_tokenize

Model

1. Seq2Seq with Bahdanau Attention
2. Transformer classification
3. Transformer
4. BERT

Trainer

    >>> from genz_tokenize.base_model.utils import Config
    >>> from genz_tokenize.base_model.models import Seq2Seq, Transformer, TransformerClassification
    >>> from genz_tokenize.base_model.training import TrainArgument, Trainer
    # create config hyper parameter
    >>> config = Config()
    >>> config.vocab_size = 100
    >>> config.target_vocab_size = 120
    >>> config.units = 16
    >>> config.maxlen = 20
    # initial model
    >>> model = Seq2Seq(config)
    >>> x = tf.zeros(shape=(10, config.maxlen))
    >>> y = tf.zeros(shape=(10, config.maxlen))
    # create dataset
    >>> BUFFER_SIZE = len(x)
    >>> dataset_train = tf.data.Dataset.from_tensor_slices((x, y))
    >>> dataset_train = dataset_train.shuffle(BUFFER_SIZE)
    >>> dataset_train = dataset_train.batch(2)
    >>> dataset_train = dataset_train.prefetch(tf.data.experimental.AUTOTUNE)

    >>> args = TrainArgument(batch_size=2, epochs=2)
    >>> trainer = Trainer(model=model, args=args, data_train=dataset_train)
    >>> trainer.train()
    >>> from genz_tokenize.models.bert import DataCollection
    >>> from genz_tokenize.models.bert.training import TrainArg, Trainner
    >>> from genz_tokenize.models.bert.roberta import RoBertaClassification, RobertaConfig
    >>> import tensorflow as tf

    >>> x = tf.zeros(shape=(10, 10), dtype=tf.int32)
    >>> mask = tf.zeros(shape=(10, 10), dtype=tf.int32)
    >>> y = tf.zeros(shape=(10, 2), dtype=tf.int32)

    >>> dataset = DataCollection(
                    input_ids=x,
                    attention_mask=mask,
                    token_type_ids=None,
                    dec_input_ids=None,
                    dec_attention_mask=None,
                    dec_token_type_ids=None,
                    y=y
                )
    >>> tf_dataset = dataset.to_tf_dataset(batch_size=2)

    >>> config = RobertaConfig()
    >>> config.num_class = 2
    >>> model = RoBertaQAEncoderDecoder(config)
    >>> arg = TrainArg(epochs=2, batch_size=2, learning_rate=1e-2)
    >>> trainer = Trainner(model, arg, tf_dataset)
    >>> trainer.train()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genz-tokenize-1.2.1.tar.gz (62.5 MB view details)

Uploaded Source

Built Distribution

genz_tokenize-1.2.1-py3-none-any.whl (63.9 MB view details)

Uploaded Python 3

File details

Details for the file genz-tokenize-1.2.1.tar.gz.

File metadata

  • Download URL: genz-tokenize-1.2.1.tar.gz
  • Upload date:
  • Size: 62.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for genz-tokenize-1.2.1.tar.gz
Algorithm Hash digest
SHA256 5b1250260e7c804e97519d47a2f841cc9b8c0fe4454bafbc23cb00a05746c847
MD5 99563d1de64708d77b0ef4e2d6e80111
BLAKE2b-256 b94d07df4c3f217b54883570234c15726861f57753052114eac6b84b222c9dca

See more details on using hashes here.

File details

Details for the file genz_tokenize-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: genz_tokenize-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 63.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for genz_tokenize-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3b1a814545946a8bbd5c300503daa19046aa4eebbb36d11d00415eff9d7e1889
MD5 0dd80d634e6d677c5451b3444ff96112
BLAKE2b-256 50bf7de4c498183be0486b1e7e1b146e39b48acc85b9748d0de442dd5bee77bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page