Skip to main content

Vietnamese tokenization, preprocess and models NLP

Reason this release was yanked:

error Tokenize

Project description

Genz Tokenize

Installation:

pip install genz-tokenize

Using for tokenize

    >>> from genz_tokenize import Tokenize
    # using vocab from lib
    >>> tokenize = Tokenize()
    >>> print(tokenize('sinh_viên công_nghệ', 'hello', max_len = 10, padding = True, truncation = True))
    # {'input_ids': [1, 770, 1444, 2, 2, 30469, 2, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'sequence_id': [None, 0, 0, None, None, 1, None]}

    >>> print(tokenize.decode([1, 770, 2]))
    # <s> sinh_viên </s>

    # from your vocab
    >>> tokenize = Tokenize.fromFile('vocab.txt','bpe.codes')

Using bert tokenize inheritance from PreTrainedTokenizer Transformers

    >>> from genz_tokenize import TokenizeForBert
    # Using vocab from lib
    >>> tokenize = TokenizeForBert()
    >>> print(tokenize(['sinh_viên công_nghệ', 'hello'], max_length=5, padding='max_length',truncation=True))
    # {'input_ids': [[1, 770, 1444, 2, 0], [1, 30469, 2, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 0], [1, 1, 1, 0, 0]]}

    # Using your vocab
    >>> tokenize = TokenizeForBert.fromFile('vocab.txt','bpe.codes')

Embedding matrix from fasttext

    >>> from genz_tokenize import get_embedding_matrix
    >>> embedding_matrix = get_embedding_matrix()

Preprocessing data

    >>> from genz_tokenize.preprocess import remove_punctuations,  convert_unicode, remove_emoji, vncore_tokenize

Model

1. Seq2Seq with Bahdanau Attention
2. Transformer classification
3. Transformer
4. BERT

Trainer

    >>> from genz_tokenize.base_model.utils import Config
    >>> from genz_tokenize.base_model.models import Seq2Seq, Transformer, TransformerClassification
    >>> from genz_tokenize.base_model.training import TrainArgument, Trainer
    # create config hyper parameter
    >>> config = Config()
    >>> config.vocab_size = 100
    >>> config.target_vocab_size = 120
    >>> config.units = 16
    >>> config.maxlen = 20
    # initial model
    >>> model = Seq2Seq(config)
    >>> x = tf.zeros(shape=(10, config.maxlen))
    >>> y = tf.zeros(shape=(10, config.maxlen))
    # create dataset
    >>> BUFFER_SIZE = len(x)
    >>> dataset_train = tf.data.Dataset.from_tensor_slices((x, y))
    >>> dataset_train = dataset_train.shuffle(BUFFER_SIZE)
    >>> dataset_train = dataset_train.batch(2)
    >>> dataset_train = dataset_train.prefetch(tf.data.experimental.AUTOTUNE)

    >>> args = TrainArgument(batch_size=2, epochs=2)
    >>> trainer = Trainer(model=model, args=args, data_train=dataset_train)
    >>> trainer.train()
    >>> from genz_tokenize.models.bert import DataCollection
    >>> from genz_tokenize.models.bert.training import TrainArg, Trainner
    >>> from genz_tokenize.models.bert.roberta import RoBertaClassification, RobertaConfig
    >>> import tensorflow as tf

    >>> x = tf.zeros(shape=(10, 10), dtype=tf.int32)
    >>> mask = tf.zeros(shape=(10, 10), dtype=tf.int32)
    >>> y = tf.zeros(shape=(10, 2), dtype=tf.int32)

    >>> dataset = DataCollection(
                    input_ids=x,
                    attention_mask=mask,
                    token_type_ids=None,
                    dec_input_ids=None,
                    dec_attention_mask=None,
                    dec_token_type_ids=None,
                    y=y
                )
    >>> tf_dataset = dataset.to_tf_dataset(batch_size=2)

    >>> config = RobertaConfig()
    >>> config.num_class = 2
    >>> model = RoBertaQAEncoderDecoder(config)
    >>> arg = TrainArg(epochs=2, batch_size=2, learning_rate=1e-2)
    >>> trainer = Trainner(model, arg, tf_dataset)
    >>> trainer.train()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

genz-tokenize-1.2.2.tar.gz (62.5 MB view details)

Uploaded Source

Built Distribution

genz_tokenize-1.2.2-py3-none-any.whl (63.9 MB view details)

Uploaded Python 3

File details

Details for the file genz-tokenize-1.2.2.tar.gz.

File metadata

  • Download URL: genz-tokenize-1.2.2.tar.gz
  • Upload date:
  • Size: 62.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for genz-tokenize-1.2.2.tar.gz
Algorithm Hash digest
SHA256 604590954406c592979b6c54d59aafc180f5e77bad52742b24ccc52fff86c87e
MD5 dff85c95839d5ba676da6a0c7921c38c
BLAKE2b-256 a10a14485ebf6d0d71f76de2bf4930619f29aef2dd953ea25097e5f9b2985f8d

See more details on using hashes here.

File details

Details for the file genz_tokenize-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: genz_tokenize-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 63.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for genz_tokenize-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d7ba117b5eb5f6e753207cbf5ac676d20c7029cf61cb97abf7122e97fba38b9f
MD5 ad102d84a6a1a2835185804faea46265
BLAKE2b-256 0bebcfdc6cd8cea219ccc1181c0383e5b859b8e5eef310c2263f1f777e66deaf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page