Vietnamese tokenization, preprocess and models NLP
Project description
Genz Tokenize
Using for tokenize
from genz_tokenize import Tokenize
# using vocab from lib
tokenize = Tokenize()
print(tokenize('sinh_viên công_nghệ', 'hello', max_len = 10, padding = True, truncation = True))
# {'input_ids': [1, 770, 1444, 2, 2, 30469, 2, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'sequence_id': [None, 0, 0, None, None, 1, None]}
print(tokenize.decode([1, 770, 2]))
# <s> sinh_viên </s>
# from your vocab
tokenize = Tokenize.fromFile('vocab.txt','bpe.codes')
Embedding matrix from fasttext
from genz_tokenize import get_embedding_matrix
embedding_matrix = get_embedding_matrix()
Preprocessing data
from genz_tokenize.preprocess import remove_punctuations, convert_unicode, remove_emoji, vncore_tokenize
Model
1. Seq2Seq with Bahdanau Attention
2. Transformer classification
3. Transformer
4. BERT
Trainer
from genz_tokenize.base_model.utils import Config
from genz_tokenize.base_model.models import Seq2Seq, Transformer, TransformerClassification
from genz_tokenize.base_model.training import TrainArgument, Trainer
# create config hyper parameter
config = Config()
config.vocab_size = 100
config.target_vocab_size = 120
config.units = 16
config.maxlen = 20
# initial model
model = Seq2Seq(config)
x = tf.zeros(shape=(10, config.maxlen))
y = tf.zeros(shape=(10, config.maxlen))
# create dataset
BUFFER_SIZE = len(x)
dataset_train = tf.data.Dataset.from_tensor_slices((x, y))
dataset_train = dataset_train.shuffle(BUFFER_SIZE)
dataset_train = dataset_train.batch(2)
dataset_train = dataset_train.prefetch(tf.data.experimental.AUTOTUNE)
args = TrainArgument(batch_size=2, epochs=2)
trainer = Trainer(model=model, args=args, data_train=dataset_train)
trainer.train()
from genz_tokenize.models.bert import DataCollection
from genz_tokenize.models.bert.training import TrainArg, Trainner
from genz_tokenize.models.bert.roberta import RoBertaClassification, RobertaConfig
import tensorflow as tf
x = tf.zeros(shape=(10, 10), dtype=tf.int32)
mask = tf.zeros(shape=(10, 10), dtype=tf.int32)
y = tf.zeros(shape=(10, 2), dtype=tf.int32)
dataset = DataCollection(
input_ids=x,
attention_mask=mask,
token_type_ids=None,
dec_input_ids=None,
dec_attention_mask=None,
dec_token_type_ids=None,
y=y
)
tf_dataset = dataset.to_tf_dataset(batch_size=2)
config = RobertaConfig()
config.num_class = 2
model = RoBertaQAEncoderDecoder(config)
arg = TrainArg(epochs=2, batch_size=2, learning_rate=1e-2)
trainer = Trainner(model, arg, tf_dataset)
trainer.train()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
genz-tokenize-1.2.7a2.tar.gz
(62.5 MB
view details)
Built Distribution
File details
Details for the file genz-tokenize-1.2.7a2.tar.gz
.
File metadata
- Download URL: genz-tokenize-1.2.7a2.tar.gz
- Upload date:
- Size: 62.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc0bb0baf6a2fd2d50c9b66978bdbac0fb47215a3682d06068d960b480fa4690 |
|
MD5 | 1750588c59884944c8ee95720c56b3b8 |
|
BLAKE2b-256 | 5d10032edb3ce6ebdad356266c6034523f98d518561822d006608602dc0a8592 |
File details
Details for the file genz_tokenize-1.2.7a2-py3-none-any.whl
.
File metadata
- Download URL: genz_tokenize-1.2.7a2-py3-none-any.whl
- Upload date:
- Size: 63.9 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a43271377ce7ff43733f031e4f86728ac656088874837b45c18104ecf4c2a967 |
|
MD5 | fdb0bf2e59b88c2e5db266124ee2f30f |
|
BLAKE2b-256 | 3cc3942d0155b4093463d1d6bcb0bdb5d5c350d86ceb4c35626c9bb56a608de7 |