Skip to main content

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers

Project description

Espresso

PyPI version build Documentation Status Slack

Related repositories by InLab

Introduction

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers (Espresso) is a collection of datasets, and associated simulation codes, spanning a wide range of geoscience problems. Together they form a suite of real-world test problems that can be used to support the development, evaluation and benchmarking of a wide range of tools and algorithms for inference, inversion and optimisation. All problems are designed to share a common interface, so that changing from one test problem to another requires changing one line of code.

The Espresso project is a community effort - if you think it sounds useful, please consider contributing an example or two from your own research. The project is currently being coordinated by InLab, with support from the CoFI development team.

For more information, please visit our documentation.

Installation

$ pip install geo-espresso

Check Espresso documentation - installation page for details on dependencies and setting up with virtual environments.

Basic usage

Once installed, each test problem can be imported using the following command:

from espresso import <testproblem>

Replace <testproblem> with an actual problem class in Espresso, such as SimpleRegression and FmWavefrontTracker. See here for a full list of problems Espresso currently includes.

Once a problem is imported, its main functions can be called using the same structure for each problem. For instance:

from espresso import FmWavefrontTracker

problem = FmWavefrontTracker(example_number=1)
model = problem.good_model
data = problem.data
pred = problem.forward(model)
fig_model = problem.plot_model(model)

You can access related metadata programatically:

print(FmWavefrontTracker.metadata["problem_title"])
print(FmWavefrontTracker.metadata["problem_short_description"])
print(FmWavefrontTracker.metadata["author_names"])

Other problem-specific parameters can be accessed through the problem instance. For instance:

print(problem.extent)
print(problem.model_shape)

Which additional values are set is highly problem-specific and we suggest to consult the Espresso Documentation on the problems.

Contributing

Interested in contributing? Please check out our contributor's guide.

Licence

Espresso is a community driven project to create a large suite of forward simulations to enable researchers to get example data without the need to understand each individual problem in detail.

Licensing is done individually by each contributor. If a contributor wants to freely share their code example we recommend the MIT licence or a 2-clause BSD licence. To determine the licence of an existing Espresso problem, please consult the documentation section of that problem.

All the other core functions of Espresso written by InLab Espresso developer team are distributed under a 2-clause BSD licence. A copy of this licence is provided with distributions of the software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geo-espresso-0.3.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

geo_espresso-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

geo_espresso-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

geo_espresso-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

geo_espresso-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

geo_espresso-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file geo-espresso-0.3.0.tar.gz.

File metadata

  • Download URL: geo-espresso-0.3.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for geo-espresso-0.3.0.tar.gz
Algorithm Hash digest
SHA256 93a6f9af14b8e2f317254a2bdcca0bf35b7bd7082694101b1f2682737b49ffc3
MD5 6ca963087e4d7490c9f8586dc01feb57
BLAKE2b-256 9a224ba5e8648983df80ec6fb7821a11246e26197b80b171f4122c74a3a31c63

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 502e80a34dede33f90f8e82c50df4ca3f74ca1e5726e9dfa6d0e4f6179110ae4
MD5 dc8a1d573c943c7b05cee83fdad89f31
BLAKE2b-256 763d7c79110bb5b22fb1557f36af3b1c46a353d9c790f25b35e6b7d894a6f970

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d7024400649dec5a4fd8329e90e8b40dbbfa2fb9560185e065c694ce6c55fea
MD5 9a064c2fd4f6d05dbefb05770e98e625
BLAKE2b-256 af2bdfc7f6fbb87e24fd968d6a29fc298e49d3504ed3cb9916a2d6638bfbe30e

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d49436ceea475f1b343b125f51ab2947b5135009adfead9234460ed4c71d5fe
MD5 2a79274769c5378a0c54de92a050c6a4
BLAKE2b-256 e6c575eab0e7556a9b1df72ced31efbec3f4047388cbe403f00c3d9cec5447e7

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ef90ab3cea670328393b29da9bc2a81fc14b8504e27ab47e98cc690d49bd6fa
MD5 ccb8d118f19937c0d1f3e0ca7066176c
BLAKE2b-256 3e626cb5fd304a6d54e2690300579076334bc1a09ff3d30bcf43e6e5b07b9475

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73ce8d4969db1ba2dd16eff9c900d3f29b0f66de84c1d3405405754b4fed7770
MD5 c8b8dd140c34e63edf7c0bd510e51856
BLAKE2b-256 98acb45f6ad0b27c7607e4369d2358dc92da88ef2ddb21be8bd9bb04164cc93b

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1299a7bf3ee71f1b48847612b8aea757a682cbde50690f2eaedfc334ebf97e13
MD5 9d369b64c761177e5d07ffd37dec503c
BLAKE2b-256 cdfc3140efd39adac8c453ef268bd81d63070a32ad3691665096db7527c0582e

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc87ec31174e27f0ac6a470ad84e2d72792dec6634fcc3a44e45edfb7ef2562c
MD5 2e5bef13add852e5ce838c839e30ea53
BLAKE2b-256 7169d75724e50a07cf9e6506e371c1f9b64b7a953ce4e7e3ac3553ab2d6334e9

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88791ff060546285e8c0b2bd8bb029d42ff3aff6c1279a632acce3a61dd31167
MD5 8137cfe1c0029c47f978b2bfd11e12f1
BLAKE2b-256 7f77f10ff425099659bcda8398750714ea42588a99a81f1a61b860d20ed6ffc9

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3e7ea4fd0ff0e3ae4afae96000acda2c144b03b6314c808fbfa6b9e561a9753
MD5 40355903bfc665bd5d67a2170ef37224
BLAKE2b-256 df031d4fffe98d14fd7b350793036d3a32af7f28067c637f9b4632125d210f5a

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe000ef35e19af38c7ad1331f9609400c5bde80cf12880c708a2e3d70207f9d7
MD5 e1a234ddd0fab750d49bf89d18a1eee9
BLAKE2b-256 f8590ccf861d075e8bd588be4c7d861a8e8cbf1c997abb6e4aeead43c29482c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page