Skip to main content

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers

Project description

Espresso

PyPI version build Documentation Status Slack

Related repositories by InLab

Introduction

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers (Espresso) is a collection of datasets, and associated simulation codes, spanning a wide range of geoscience problems. Together they form a suite of real-world test problems that can be used to support the development, evaluation and benchmarking of a wide range of tools and algorithms for inference, inversion and optimisation. All problems are designed to share a common interface, so that changing from one test problem to another requires changing one line of code.

The Espresso project is a community effort - if you think it sounds useful, please consider contributing an example or two from your own research. The project is currently being coordinated by InLab, with support from the CoFI development team.

For more information, please visit our documentation.

Installation

$ pip install geo-espresso

Check Espresso documentation - installation page for details on dependencies and setting up with virtual environments.

Basic usage

Once installed, each test problem can be imported using the following command:

from espresso import <testproblem>

Replace <testproblem> with an actual problem class in Espresso, such as SimpleRegression and FmmTomography. See here for a full list of problems Espresso currently includes.

Once a problem is imported, its main functions can be called using the same structure for each problem. For instance:

from espresso import FmmTomography

problem = FmmTomography(example_number=1)
model = problem.good_model
data = problem.data
pred = problem.forward(model)
fig_model = problem.plot_model(model)

You can access related metadata programatically:

print(FmmTomography.metadata["problem_title"])
print(FmmTomography.metadata["problem_short_description"])
print(FmmTomography.metadata["author_names"])

Other problem-specific parameters can be accessed through the problem instance. For instance:

print(problem.extent)
print(problem.model_shape)

Which additional values are set is highly problem-specific and we suggest to consult the Espresso Documentation on the problems.

Contributing

Interested in contributing? Please check out our contributor's guide.

Licence

Espresso is a community driven project to create a large suite of forward simulations to enable researchers to get example data without the need to understand each individual problem in detail.

Licensing is done individually by each contributor. If a contributor wants to freely share their code example we recommend the MIT licence or a 2-clause BSD licence. To determine the licence of an existing Espresso problem, please consult the documentation section of that problem.

All the other core functions of Espresso written by InLab Espresso developer team are distributed under a 2-clause BSD licence. A copy of this licence is provided with distributions of the software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geo-espresso-0.3.11.tar.gz (72.6 MB view details)

Uploaded Source

Built Distributions

geo_espresso-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl (72.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

geo_espresso-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl (72.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

geo_espresso-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl (72.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

geo_espresso-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl (72.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

geo_espresso-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl (72.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file geo-espresso-0.3.11.tar.gz.

File metadata

  • Download URL: geo-espresso-0.3.11.tar.gz
  • Upload date:
  • Size: 72.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for geo-espresso-0.3.11.tar.gz
Algorithm Hash digest
SHA256 0fee240e2a92305ecceb92811bb71b4cb2a5d4ab804f9d2476e4eb431a746b31
MD5 c107c2d57f5c01412b332db1e93a70ac
BLAKE2b-256 49632aeb9b02c9921582524e175f74fa4df8be5e060ab001fd5206769ee68f21

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f26a8496d816eeb899017f29b684c19a8e237da05d3ed86006df644377b502de
MD5 e715b34276c7f5957a7a02e4f4fabc0f
BLAKE2b-256 2328f50b8eac2f7ba74c83c00e872eefbc5049258e65b7dc72351fb15caf2c88

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adf5274650a5dcac4237453ae5a58b5c1426179d6cc0ec19b97289f393929cc0
MD5 28e452677652065d6fb590b7cf3ff657
BLAKE2b-256 f552bdad499cda2445d5d8f9d19e5f126c183a21253ec4b4206d8e85b1a2e518

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fe782a5672799532fb6cd3870f70230bb86830e78228320021be1d57f18a4b0
MD5 1807550c33fe8f2b56a719e3d5ef7965
BLAKE2b-256 af5fa3ec24883d7d75f8bcfc5ed90c0c06b32f748f38f03edaf1cd780fd17189

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1dd99c90100f8228f48a5152f11750fbb208cf5f4c23065cd99c189adde96b4e
MD5 876b5b136c54febbd7a6c4e72d86b566
BLAKE2b-256 a7547c43f84114269976a90b13b08e616a79ad1ae6d8e74f9bd5a27ea77f6336

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2beba6fe26da7ba4e5e86d4ae2eaf179a2971945617f86012cc661ade10ddca8
MD5 51a5643fd106391733747dd62cbac1f1
BLAKE2b-256 c6e89dc84e7e125bc6eb43f2033af456e5fb486a00a455b206124900dfb91bdc

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5069c15e9697d14cc500428bb9b3c1feeeb0a3617a7e681e64a4020fa210cea6
MD5 8dc969731264b578ffb307a2e1b6faf0
BLAKE2b-256 c70a756baa65afba07d872ebdeaf48829c09b5aca3147c4c1f876ee22a5084b7

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69acaa6f2967414dd1b60031987138ad6a016cd7d35e7d399b6e7de70fd9d6ce
MD5 8236ed16741bc08115ac8ba06f5e3f65
BLAKE2b-256 759cc1c3e4ec0d05685146c8aeb17cebcb4ea7c0d7da38c8953012a4da15b571

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1dc9f3d21907774aba977b85646d495b1392f52e8010c4b14d34a5f3bbabc6a2
MD5 bdf5bbf41d8c801a8776355d4b1d38d9
BLAKE2b-256 64159ccf590607d59fb4348bb5091b0c7e287649f0a41924374ae2314d1527de

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3a6cd41e0386ea7c377486ded757485c962cfe5e96f1d67a61e0a4b69b6a3f1
MD5 db75993201267462eca3408dafa19ba7
BLAKE2b-256 5fd3dd5f211ce182b9168cce7cea1d68dd66f9493a8987bbdbe17986dea0cd13

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffd0225e72a306c36f62fe5cb77ab7323c8b4429d594f5f4df545dfe9dce1230
MD5 f05faa35f902caeedc963fb1200a7f98
BLAKE2b-256 e227d031d1ce1458b8d50730e662e827d1efbb6d14c7a505d5544d63b0353f3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page