Skip to main content

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers

Project description

Espresso

PyPI version build Documentation Status Slack

Related repositories by InLab

Introduction

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers (Espresso) is a collection of datasets, and associated simulation codes, spanning a wide range of geoscience problems. Together they form a suite of real-world test problems that can be used to support the development, evaluation and benchmarking of a wide range of tools and algorithms for inference, inversion and optimisation. All problems are designed to share a common interface, so that changing from one test problem to another requires changing one line of code.

The Espresso project is a community effort - if you think it sounds useful, please consider contributing an example or two from your own research. The project is currently being coordinated by InLab, with support from the CoFI development team.

For more information, please visit our documentation.

Installation

$ pip install geo-espresso

Check Espresso documentation - installation page for details on dependencies and setting up with virtual environments.

Basic usage

Once installed, each test problem can be imported using the following command:

from espresso import <testproblem>

Replace <testproblem> with an actual problem class in Espresso, such as SimpleRegression and FmWavefrontTracker. See here for a full list of problems Espresso currently includes.

Once a problem is imported, its main functions can be called using the same structure for each problem. For instance:

from espresso import FmWavefrontTracker

problem = FmWavefrontTracker(example_number=1)
model = problem.good_model
data = problem.data
pred = problem.forward(model)
fig_model = problem.plot_model(model)

You can access related metadata programatically:

print(FmWavefrontTracker.metadata["problem_title"])
print(FmWavefrontTracker.metadata["problem_short_description"])
print(FmWavefrontTracker.metadata["author_names"])

Other problem-specific parameters can be accessed through the problem instance. For instance:

print(problem.extent)
print(problem.model_shape)

Which additional values are set is highly problem-specific and we suggest to consult the Espresso Documentation on the problems.

Contributing

Interested in contributing? Please check out our contributor's guide.

Licence

Espresso is a community driven project to create a large suite of forward simulations to enable researchers to get example data without the need to understand each individual problem in detail.

Licensing is done individually by each contributor. If a contributor wants to freely share their code example we recommend the MIT licence or a 2-clause BSD licence. To determine the licence of an existing Espresso problem, please consult the documentation section of that problem.

All the other core functions of Espresso written by InLab Espresso developer team are distributed under a 2-clause BSD licence. A copy of this licence is provided with distributions of the software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geo-espresso-0.3.3.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

geo_espresso-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

geo_espresso-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

geo_espresso-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

geo_espresso-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

geo_espresso-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file geo-espresso-0.3.3.tar.gz.

File metadata

  • Download URL: geo-espresso-0.3.3.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for geo-espresso-0.3.3.tar.gz
Algorithm Hash digest
SHA256 abbddc5330a8cc9ed7f9f0de2000e96fdfd3fdbb29815304596247ac35c46045
MD5 4c2cc7de23ea7346defe72dc383cff98
BLAKE2b-256 de69461969bbacea407d2d84b104a9d6837c4009604b67260803f8b31a33d468

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e30feb26aede0d54b7d605e6e59719d0de2b2dd30cf4b5b394af6cf5068b1964
MD5 46c286a1c909fafdfafc842918f97127
BLAKE2b-256 364f49b00c37b8ccb5a0edf37ce59d0e4bb74911457bfb1ec01b2a9b3e536157

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 507525e58f61d19eabf54b829e12f27eeac81d07b8fcaaf553998f07858202ea
MD5 0c30ce4dcf0b5869ea0d4564121c6022
BLAKE2b-256 5dbf1165fcfb3c43554bad1de3b34c4c98698153bde6ebae0cb5855b24abd539

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1c4434a22759c48409471e1226fc01f49fe8dd8603575788dc0c67a894f8068
MD5 3e73f0471a0972baa857534f1a940887
BLAKE2b-256 9cc6a1720bcc60252093e9a0b2327db07b3d914aba3f96da5b4f4b5b7d453890

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f27e1b3c0718d0ef1280932c865566397afdb555610d817b42d81d6859fd931
MD5 aedb41e80ce5aadeac548ae4f644c368
BLAKE2b-256 0e0af05f69a7123429c08a003b9e57c36032116be5dcd919850eedbc459b80b1

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40418485e51ac1ec3894f3e784757f2978958659104249c93b6c4034388c2ae9
MD5 f8be839ae3eabe2f9622d41b39fb659f
BLAKE2b-256 c85b2527eba4510fd10480aada677d5ca2f25f43b7dd61b3e0a0cbb83c60abe9

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72b3f71f504f2b81224f221749d42dddb3fdb3b4af2f93144cda4dacbe85f6a8
MD5 dd5ca64ebcebf80473484dbea2b47ae5
BLAKE2b-256 e25be720983f3c1698373b3695d1f164a22c5e5da663bb4f591264091bd2f7b7

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69a9a99a45aeded638437e577b8736e9a6a48e3d314f699c739c6db1504e4f51
MD5 34ff36048bd093194ddaecc7576e30a9
BLAKE2b-256 2e8c1993f3fadabb6f27463639c0f38ebc6a417437242972e03651b5f1b986e6

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1285533a0994b0830fde5dc4e23dee97af39135937c8a21a9699f0f4c2876fdf
MD5 a80f3fd43835bdac1fd9c8ceca7e997e
BLAKE2b-256 755a29c6d63a98343814969352a023a2a47bcbc0b145333523daa598407507db

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b607c5fd7d0ccb12b139c0fa82b9e3aa95dcd7c396decd503da168e187210ef
MD5 235e71332c975fb5c8e8499f07bda480
BLAKE2b-256 e10af8b24d82408b0e2a3fe85b7a894a2b6275b8af16a1a25f149f76f4324e20

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e576785a37d6a56b3853961782b5698806bf79b8aab56718aeb92dfd95e7a0c9
MD5 2e048e205d538eed365b085f28397447
BLAKE2b-256 7eec5da6e5ccf3fefd39639d0acadee79606af45f1651e3ce49b485274d4e2a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page