Spatial data examples
Project description
geodatasets
Fetch links or download and cache spatial data example files.
The geodatasets
contains an API on top of a JSON with metadata of externally hosted
datasets containing geospatial information useful for illustrative and educational
purposes.
See the documentation at geodatasets.readthedocs.io/.
Install
From PyPI:
pip install geodatasets
or using conda
or mamba
from conda-forge:
conda install geodatasets -c conda-forge
The development version can be installed using pip
from GitHub.
pip install git+https://github.com/geopandas/geodatasets.git
How to use
The package comes with a database of datasets. To see all:
In [1]: import geodatasets
In [2]: geodatasets.data
Out[2]:
{'geoda': {'airbnb': {'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
'license': 'NA',
'attribution': 'Center for Spatial Data Science, University of Chicago',
'name': 'geoda.airbnb',
'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
'geometry_type': 'Polygon',
'nrows': 77,
'ncols': 21,
'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
'filename': 'airbnb.zip'},
'atlanta': {'url': 'https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip',
'license': 'NA',
'attribution': 'Center for Spatial Data Science, University of Chicago',
'name': 'geoda.atlanta',
'description': 'Atlanta, GA region homicide counts and rates',
'geometry_type': 'Polygon',
'nrows': 90,
'ncols': 24,
'details': 'https://geodacenter.github.io/data-and-lab//atlanta_old/',
'hash': 'a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09',
'filename': 'atlanta_hom.zip',
'members': ['atlanta_hom/atl_hom.geojson']},
...
There is also a convenient top-level API. One to get only the URL:
In [3]: geodatasets.get_url("geoda airbnb")
Out[3]: 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip'
And one to get the local path. If the file is not available in the cache, it will be downloaded first.
In [4]: geodatasets.get_path('geoda airbnb')
Out[4]: '/Users/martin/Library/Caches/geodatasets/airbnb.zip'
You can also get all the details:
In [5]: geodatasets.data.geoda.airbnb
Out[5]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
'license': 'NA',
'attribution': 'Center for Spatial Data Science, University of Chicago',
'name': 'geoda.airbnb',
'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
'geometry_type': 'Polygon',
'nrows': 77,
'ncols': 21,
'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
'filename': 'airbnb.zip'}
Or using the name query:
In [6]: geodatasets.data.query_name('geoda airbnb')
Out[6]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
'license': 'NA',
'attribution': 'Center for Spatial Data Science, University of Chicago',
'name': 'geoda.airbnb',
'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
'geometry_type': 'Polygon',
'nrows': 77,
'ncols': 21,
'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
'filename': 'airbnb.zip'}
The whole structure Bunch
class is based on a dictionary and can be flattened. If you want
to see all available datasets, you can use:
In [7]: geodatasets.data.flatten().keys()
Out[7]: dict_keys(['geoda.airbnb', 'geoda.atlanta', 'geoda.cars', 'geoda.charleston1', 'geoda.charleston2', 'geoda.chicago_health', 'geoda.chicago_commpop', 'geoda.chile_labor', 'geoda.cincinnati', 'geoda.cleveland', 'geoda.columbus', 'geoda.grid100', 'geoda.groceries', 'geoda.guerry', 'geoda.health', 'geoda.health_indicators', 'geoda.hickory1', 'geoda.hickory2', 'geoda.home_sales', 'geoda.houston', 'geoda.juvenile', 'geoda.lansing1', 'geoda.lansing2', 'geoda.lasrosas', 'geoda.liquor_stores', 'geoda.malaria', 'geoda.milwaukee1', 'geoda.milwaukee2', 'geoda.ncovr', 'geoda.natregimes', 'geoda.ndvi', 'geoda.nepal', 'geoda.nyc', 'geoda.nyc_earnings', 'geoda.nyc_education', 'geoda.nyc_neighborhoods', 'geoda.orlando1', 'geoda.orlando2', 'geoda.oz9799', 'geoda.phoenix_acs', 'geoda.police', 'geoda.sacramento1', 'geoda.sacramento2', 'geoda.savannah1', 'geoda.savannah2', 'geoda.seattle1', 'geoda.seattle2', 'geoda.sids', 'geoda.sids2', 'geoda.south', 'geoda.spirals', 'geoda.stlouis', 'geoda.tampa1', 'geoda.us_sdoh', 'ny.bb', 'eea.large_rivers', 'naturalearth.land'])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file geodatasets-2024.8.0.tar.gz
.
File metadata
- Download URL: geodatasets-2024.8.0.tar.gz
- Upload date:
- Size: 457.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea1b0f885f1b3305d4a308b2ddee042e425c5288b5ff6b00e6b0ac74a4d5e8d9 |
|
MD5 | 809608a9a8deb0fc9edc0f20bf284117 |
|
BLAKE2b-256 | c51937a772bf09a9758eb1c09ed9ad6a11dcf0435dadd89bc46e3f78d709f353 |
File details
Details for the file geodatasets-2024.8.0-py3-none-any.whl
.
File metadata
- Download URL: geodatasets-2024.8.0-py3-none-any.whl
- Upload date:
- Size: 20.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd2a91618277553dbb180496bb952d496e4bc99e8c0066c5dc06701d66d53540 |
|
MD5 | 12e1251d515c2540f5ef1c41bfb35e4f |
|
BLAKE2b-256 | 9ddde30e144271280d263c0c10f34fbcf2e09e9a82bd11a165c5f1f498899a29 |