Skip to main content

Extract countries, regions and cities from a URL or text

Project description

geograpy3 is a fork of Geograpy2, which is itself a fork of geograpy and inherits most of it, but solves several problems (such as support for utf8, places names with multiple words, confusion over homonyms etc). Also, geograpy3 is compatible with Python 3, unlike Geography2.

geograpy3

Extract place names from a URL or text, and add context to those names -- for example distinguishing between a country, region or city.

Install & Setup

Grab the package using pip (this will take a few minutes)

pip install geograpy3

geograpy3 uses NLTK for entity recognition, so you'll also need to download the models we're using. Fortunately there's a command that'll take care of this for you.

geograpy-nltk

Basic Usage

Import the module, give some text or a URL, and presto.

import geograpy
url = 'http://www.bbc.com/news/world-europe-26919928'
places = geograpy.get_place_context(url=url)

Now you have access to information about all the places mentioned in the linked article.

  • places.countries contains a list of country names
  • places.regions contains a list of region names
  • places.cities contains a list of city names
  • places.other lists everything that wasn't clearly a country, region or city

Note that the other list might be useful for shorter texts, to pull out information like street names, points of interest, etc, but at the moment is a bit messy when scanning longer texts that contain possessive forms of proper nouns (like "Russian" instead of "Russia").

But Wait, There's More

In addition to listing the names of discovered places, you'll also get some information about the relationships between places.

  • places.country_regions regions broken down by country
  • places.country_cities cities broken down by country
  • places.address_strings city, region, country strings useful for geocoding

Last But Not Least

While a text might mention many places, it's probably focused on one or two, so geograpy3 also breaks down countries, regions and cities by number of mentions.

  • places.country_mentions
  • places.region_mentions
  • places.city_mentions

Each of these returns a list of tuples. The first item in the tuple is the place name and the second item is the number of mentions. For example:

[('Russian Federation', 14), (u'Ukraine', 11), (u'Lithuania', 1)]  

If You're Really Serious

You can of course use each of Geograpy's modules on their own. For example:

from geograpy import extraction

e = extraction.Extractor(url='http://www.bbc.com/news/world-europe-26919928')
e.find_entities()

# You can now access all of the places found by the Extractor
print(e.places)

Place context is handled in the places module. For example:

from geograpy import places

pc = places.PlaceContext(['Cleveland', 'Ohio', 'United States'])

pc.set_countries()
print pc.countries #['United States']

pc.set_regions()
print(pc.regions #['Ohio'])

pc.set_cities()
print(pc.cities #['Cleveland'])

print(pc.address_strings #['Cleveland, Ohio, United States'])

And of course all of the other information shown above (country_regions etc) is available after the corresponding set_ method is called.

Credits

geograpy3 uses the following excellent libraries:

geograpy3 uses the following data sources:

Hat tip to Chris Albon for the name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geograpy3-0.1.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

geograpy3-0.1.2-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file geograpy3-0.1.2.tar.gz.

File metadata

  • Download URL: geograpy3-0.1.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.2

File hashes

Hashes for geograpy3-0.1.2.tar.gz
Algorithm Hash digest
SHA256 5f29589f3ceee46c726fe4d07a70103efd9143c4e2d82344e0a68dcc32e9c635
MD5 debc557cc2b37d694865e8a7f13d54e4
BLAKE2b-256 89c19262f8f61f5924a150fd32f2e8b6d4280392d0dae16f9ba454b92adf6084

See more details on using hashes here.

Provenance

File details

Details for the file geograpy3-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: geograpy3-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.2

File hashes

Hashes for geograpy3-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3a5fc32b6cb3ab5ea5e7de8d2316f95f5951163403909efd8a973f50ce58b50d
MD5 392aad8a3d88bb441ac88af74d4901f9
BLAKE2b-256 573e881a580f03ee257b61b157bc82b011d35cb3174da1b5f48dbeae38c64b87

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page