Skip to main content

Python geometry package based on projective geometry and numpy.

Project description

geometer

image image image Build Status codecov

WORK IN PROGRESS!

Geometer is a geometry library for Python 3 based on the concepts of projective geometry. This means that every point in two dimensions is represented by a three-dimensional vector and every point in three dimensions is represented by a four-dimensional vector. This representation has the following advantages:

  • There are points at infinity that can be treated just like normal points.
  • Projective transformations are described by matrices but they can also represent affine transformations i.e. also translations.
  • Every two lines have a unique point of intersection if they lie in the same plane. Parallel lines have a point of intersection at infinity.
  • Points of intersection, planes or lines through certain given points can be calculated using simple cross products or tensor diagrams.
  • Special complex points at infinity and cross ratios can be used to calculate angles or to construct perpendicular geometric structures.

Most of the computation in the library is based on numpy. In three dimensional projective space, numpy.einsum is used to compute tensor diagrams.

The source code of the package can be found on GitHub and the documentation on Read the Docs.

Installation

You can install the package directly from PyPi:

   pip install geometer

Usage

from geometer import *
import numpy as np

# Meet and Join operations
p = Point(2, 4)
q = Point(3, 5)
l = Line(p, q)
m = Line(0, 1, 0)
l.meet(m)
# Point(-2, 0)

# Parallel and perpendicular lines
m = l.parallel(through=Point(1, 1))
n = l.perpendicular(through=Point(1, 1))
is_perpendicular(m, n)
# True

# Angles and distances (euclidean)
a = angle(l, Point(1, 0))
p + 2*dist(p, q)*Point(np.cos(a), np.sin(a))
# Point(4, 6)


# Transformations
t1 = translation(0, -1)
t2 = rotation(-np.pi)
t1*t2*p
# Point(-2, -5)

# Quadratic forms
a = Point(-1, 0)
b = Point(0, 3)
c = Point(1, 2)
d = Point(2, 1)
e = Point(0, -1)

conic = Conic.from_points(a, b, c, d, e)

# 3-dimensional objects
p1 = Point(1, 1, 0)
p2 = Point(2, 1, 0)
p3 = Point(3, 4, 0)
l = p1.join(p2)
A = join(l, p3)
A.project(Point(3, 4, 5))
# Point(3, 4, 0)

l = Line(Point(1, 2, 3), Point(3, 4, 5))
A.meet(l)
# Point(-2, -1, 0)

# Crossratios
t = rotation(np.pi/16)
r = crossratio(q, t*q, t**2 * q, t**3 * q, p)
# 2.093706208978352

References

Many of the algorithms and formulas implemented in the package are taken from the following books and papers:

  • Jürgen Richter-Gebert, Perspectives on Projective Geometry
  • Jürgen Richter-Gebert and Thorsten Orendt, Geometriekalküle
  • Olivier Faugeras, Three-Dimensional Computer Vision
  • Jim Blinn, Lines in Space: The 4D Cross Product
  • Jim Blinn, Lines in Space: The Line Formulation
  • Jim Blinn, Lines in Space: The Two Matrices
  • Jim Blinn, Lines in Space: Back to the Diagrams
  • Jim Blinn, Lines in Space: A Tale of Two Lines
  • Jim Blinn, Lines in Space: Our Friend the Hyperbolic Paraboloid
  • Jim Blinn, Lines in Space: The Algebra of Tinkertoys
  • Jim Blinn, Lines in Space: Line(s) through Four Lines

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for geometer, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size geometer-0.1.0-py3-none-any.whl (14.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size geometer-0.1.0.tar.gz (15.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page