Skip to main content

Library for performing queries and transformations on GeoJSON data (with emphasis on support for abstract graph representations).

Project description

Library for performing queries and transformations on GeoJSON data (with emphasis on support for abstract graph representations).

Package Installation and Usage

The package is available on PyPI:

python -m pip install geoql

The library can be imported in the usual ways:

import geoql
from geoql import geoql

Examples

An example of usage is provided below:

import geojson
from geoql import geoql
import geoleaflet
import requests

url = 'https://raw.githubusercontent.com/Data-Mechanics/geoql/master/examples/'

# Boston ZIP Codes regions.
z = geoql.loads(requests.get(url + 'example_zips.geojson').text, encoding="latin-1")

# Extract of street data.
g = geoql.loads(requests.get(url + 'example_extract.geojson').text, encoding="latin-1")

g = g.properties_null_remove()\
     .tags_parse_str_to_dict()\
     .keep_by_property({"highway": {"$in": ["residential", "secondary", "tertiary"]}})
g = g.keep_within_radius((42.3551, -71.0656), 0.75, 'miles') # 0.75 miles from Boston Common.
g = g.keep_that_intersect(z) # Only those entries found in a Boston ZIP Code regions.
g = g.node_edge_graph() # Converted into a graph with nodes and edges.
g.dump(open('example_extract.geojson', 'w'))
open('leaflet.html', 'w').write(geoleaflet.html(g)) # Create visualization.

An alternative example of usage is provided below (the below usage is deprecated but will remain supported):

import geojson
import geoql
import geoleaflet
import requests

url = 'https://raw.githubusercontent.com/Data-Mechanics/geoql/master/examples/'

# Boston ZIP Codes regions.
z = geojson.loads(requests.get(url + 'example_zips.geojson').text, encoding="latin-1")

# Extract of street data.
g = geojson.loads(requests.get(url + 'example_extract.geojson').text, encoding="latin-1")

g = geoql.features_properties_null_remove(g)
g = geoql.features_tags_parse_str_to_dict(g)
g = geoql.features_keep_by_property(g, {"highway": {"$in": ["residential", "secondary", "tertiary"]}})
g = geoql.features_keep_within_radius(g, (42.3551, -71.0656), 0.75, 'miles') # Within 0.75 of Boston Common.
g = geoql.features_keep_intersecting_features(g, z) # Only those entries found in a Boston ZIP Code regions.
g = geoql.features_node_edge_graph(g) # Converted into a graph with nodes and edges.
open('example_extract.geojson', 'w').write(geojson.dumps(g))
open('leaflet.html', 'w').write(geoleaflet.html(g)) # Create visualization.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
geoql-0.0.8.0.tar.gz (4.2 kB) Copy SHA256 hash SHA256 Source None Jul 16, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page