Skip to main content

Tools for working with Geographical Information System Rasters

Project description

PyPiVersion PyPiDownloads BuildStatus CoverageStatus

The GeoRasters package is a python module that provides a fast and flexible tool to work with GIS raster files. It provides the GeoRaster class, which makes working with rasters quite transparent and easy. In a way it tries to do for rasters what GeoPandas does for geometries.

It includes tools to

  • Merge rasters

  • Plot rasters

  • Extract information from rasters

  • Given a point (lat,lon) find its location in a raster

  • Aggregate rasters to lower resolutions

  • Align two rasters of different sizes to common area and size

  • Get all the geographical information of raster

  • Create GeoTiff files easily

  • Load GeoTiff files as masked numpy rasters

  • Clip raster using geometries

  • Get zonal statistics using geometries

  • Spatial analysis tools

Install

pip install git+git://github.com/ozak/georasters.git
pip install georasters

Example Usage: GeoRasters

import georasters as gr

# Load data
raster = './data/slope.tif'
data = gr.from_file(raster)

# Plot data
data.plot()

# Get some stats
data.mean()
data.sum()
data.std()

# Convert to Pandas DataFrame
df = data.to_pandas()

# Save transformed data to GeoTiff
data2 = data**2
data2.to_tiff('./data2')

# Algebra with rasters
data3 = np.sin(data.raster) / data2
data3.plot()

# Notice that by using the data.raster object,
# you can do any mathematical operation that handles
# Numpy Masked Arrays

# Find value at point (x,y) or at vectors (X,Y)
value = data.map_pixel(x,y)
Value = data.map_pixel(X,Y)

Example Merge GeoRasters:

import os
import georasters as gr
import matplotlib.pyplot as plt

DATA = "/path/to/tiff/files"

# Import raster
raster = os.path.join(DATA, 'pre1500.tif')
data = gr.from_file(raster)
(xmin, xsize, x, ymax, y, ysize) = data.geot

# Split raster in two
data1 = gr.GeoRaster(
    data.raster[:data.shape[0] / 2, :],
    data.geot,
    nodata_value=data.nodata_value,
    projection=data.projection,
    datatype=data.datatype,
)
data2 = gr.GeoRaster(
    data.raster[data.shape[0] / 2:, :],
    (xmin, xsize, x, ymax + ysize * data.shape[0] / 2, y, ysize),
    nodata_value=data.nodata_value,
    projection=data.projection,
    datatype=data.datatype,
)

# Plot both parts and save them
plt.figure(figsize=(12, 8))
data1.plot()
plt.savefig(os.path.join(DATA, 'data1.png'), bbox_inches='tight')
./tests/data/data1.png
plt.figure(figsize=(12,8))
data2.plot()
plt.savefig(os.path.join(DATA,'data2.png'), bbox_inches='tight')
./tests/data/data2.png
# Generate merged raster

data3 = data1.union(data2)

# Plot it and save the figure

plt.figure(figsize=(12,8))
data3.plot()
plt.savefig(os.path.join(DATA,'data3.png'), bbox_inches='tight')
./tests/data/data3.png

Another Merge:

Example Usage: Other functions

import georasters as gr

# Get info on raster
NDV, xsize, ysize, GeoT, Projection, DataType = gr.get_geo_info(raster)

# Load raster
data = load_tiff(raster)

# Find location of point (x,y) on raster, e.g. to extract info at that location
col, row = gr.map_pixel(x,y,GeoT[1],GeoT[-1], GeoT[0],GeoT[3])
value = data[row,col]

# Agregate raster by summing over cells in order to increase pixel size by e.g. 10
gr.aggregate(data,NDV,(10,10))

# Align two rasters
data2 = load_tiff(raster2)
(alignedraster_o, alignedraster_a, GeoT_a) = gr.align_rasters(raster, raster2, how=np.mean)

# Create GeoRaster
A=gr.GeoRaster(data, GeoT, nodata_value=NDV)

# Load another raster
NDV, xsize, ysize, GeoT, Projection, DataType = gr.get_geo_info(raster2)
data = load_tiff(raster2)
B=gr.GeoRaster(data2, GeoT, nodata_value=NDV)

# Plot Raster
A.plot()

# Merge both rasters and plot
C=B.merge(A)
C.plot()

Issues

Find a bug? Report it via github issues by providing

  • a link to download the smallest possible raster and vector dataset necessary to reproduce the error

  • python code or command to reproduce the error

  • information on your environment: versions of python, gdal and numpy and system memory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

georasters-0.5.29.tar.gz (2.7 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

georasters-0.5.29-py2.py3-none-any.whl (30.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file georasters-0.5.29.tar.gz.

File metadata

  • Download URL: georasters-0.5.29.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for georasters-0.5.29.tar.gz
Algorithm Hash digest
SHA256 b5b154fff5952d8374dbdee5c6dc73817efca41f2d3d9b4d72617dfbd86114d3
MD5 e14765abab5678a3b63162798865a741
BLAKE2b-256 f17aa645b2fa63fe9af58e71e4d4959466062189510d08eb26236b49b62ad281

See more details on using hashes here.

File details

Details for the file georasters-0.5.29-py2.py3-none-any.whl.

File metadata

  • Download URL: georasters-0.5.29-py2.py3-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for georasters-0.5.29-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0ee04949c3868fc37e42506e475932a034097978ab83358fd9f1e47e7c4890d0
MD5 9fd3dbac665984347dc4553b1fca1698
BLAKE2b-256 98bdfdae27c7462c3c4c1f39e358ac1e4cbaf6faaac61a5a13295d04f17123ef

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page