Skip to main content

Lightweight reader for raster files

Project description

georeader

Read data from rasters: very few dependencies, reads from cloud storage and lazy loading.

Install

# From pip
pip install georeader-spaceml

# From GitHub
pip install git+https://github.com/spaceml-org/georeader#egg=georeader

# Install with Google dependencies (to read objects from Google Cloud Storage or Google Earth Engine)
pip install git+https://github.com/spaceml-org/georeader#egg=georeader[google]

# Install with Planetary Computer requirements
pip install git+https://github.com/spaceml-org/georeader#egg=georeader[microsoftplanetary]

Getting started

# This snippet requires:
# pip install fsspec gcsfs google-cloud-storage
import os
os.environ["GS_NO_SIGN_REQUEST"] = "YES"

from georeader.readers import S2_SAFE_reader
from georeader import read

cords_read = (-104.394, 32.026) # long, lat
crs_cords = "EPSG:4326"
s2_safe_path = S2_SAFE_reader.s2_public_bucket_path("S2B_MSIL1C_20191008T173219_N0208_R055_T13SER_20191008T204555.SAFE")
s2obj = S2_SAFE_reader.s2loader(s2_safe_path, 
                                out_res=10, bands=["B04","B03","B02"])

# copy to local avoids http errors specially when not using a Google project.
# This will only copy the bands set up above B04, B03 and B02
s2obj = s2obj.cache_product_to_local_dir(".")

# See also read.read_from_bounds, read.read_from_polygon for different ways of croping an image
data = read.read_from_center_coords(s2obj,cords_read, shape=(2040, 4040),
                                    crs_center_coords=crs_cords)

data_memory = data.load() # this loads the data to memory

data_memory # GeoTensor object
>>  Transform: | 10.00, 0.00, 537020.00|
| 0.00,-10.00, 3553680.00|
| 0.00, 0.00, 1.00|
         Shape: (3, 2040, 4040)
         Resolution: (10.0, 10.0)
         Bounds: (537020.0, 3533280.0, 577420.0, 3553680.0)
         CRS: EPSG:32613
         fill_value_default: 0

In the .values attribute we have the plain numpy array that we can plot with show:

from rasterio.plot import show
show(data_memory.values/3500, transform=data_memory.transform)
awesome georeader

Saving the GeoTensor as a COG GeoTIFF:

from georeader.save import save_cog

# Supports writing in bucket location (e.g. gs://bucket-name/s2_crop.tif)
save_cog(data_memory, "s2_crop.tif", descriptions=s2obj.bands)

Tutorials

Sentinel-2:

Other:

Citation

If you find this code useful please cite:

@article{portales-julia_global_2023,
	title = {Global flood extent segmentation in optical satellite images},
	volume = {13},
	issn = {2045-2322},
	doi = {10.1038/s41598-023-47595-7},
	number = {1},
	urldate = {2023-11-30},
	journal = {Scientific Reports},
	author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
	month = nov,
	year = {2023},
	pages = {20316},
}
@article{ruzicka_starcop_2023,
	title = {Semantic segmentation of methane plumes with hyperspectral machine learning models},
	volume = {13},
	issn = {2045-2322},
	url = {https://www.nature.com/articles/s41598-023-44918-6},
	doi = {10.1038/s41598-023-44918-6},
	number = {1},
	journal = {Scientific Reports},
	author = {Růžička, Vít and Mateo-Garcia, Gonzalo and Gómez-Chova, Luis and Vaughan, Anna, and Guanter, Luis and Markham, Andrew},
	month = nov,
	year = {2023},
	pages = {19999},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

georeader-spaceml-1.0.8.tar.gz (129.6 kB view details)

Uploaded Source

Built Distribution

georeader_spaceml-1.0.8-py3-none-any.whl (133.6 kB view details)

Uploaded Python 3

File details

Details for the file georeader-spaceml-1.0.8.tar.gz.

File metadata

  • Download URL: georeader-spaceml-1.0.8.tar.gz
  • Upload date:
  • Size: 129.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for georeader-spaceml-1.0.8.tar.gz
Algorithm Hash digest
SHA256 46c6316b005fb0ff119b02392d16c0a047252e230f0055bf7e201402184076fc
MD5 f28c37b78f56fcac36c317496f3cfc50
BLAKE2b-256 223df74926dd84c213450df8dda244e4380cb43afe140d08a36570d77bac68e7

See more details on using hashes here.

Provenance

File details

Details for the file georeader_spaceml-1.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for georeader_spaceml-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 af497b9aff4fed79864e3dfb98458bf8a59f80bb0fc3cc79bec53789473ac169
MD5 47922095c1b9da84e2d6c77c9b23e618
BLAKE2b-256 d70828e6d5b216643163bb5dea01273abfe8a756c27436c4c02caa7b4ec87764

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page