Skip to main content

Lightweight reader for raster files

Project description

georeader

Article DOI:10.1038/s41598-023-47595-7 GitHub release (latest SemVer including pre-releases) PyPI PyPI - Python Version PyPI - License

georeader is a package to process raster data from different satellite missions. georeader makes easy to read specific areas of your image, to reproject images from different satellites to a common grid and to go from vector to raster formats (vectorize and rasterize). georeader is mainly used to process satellite data for scientific usage, to create ML-ready datasets and to implement end-to-end operational inference pipelines.

Install

The core package has very few dependencies; it is build on top of the geospatial libraries rasterio, shapely and geopandas.

pip install georeader-spaceml

Getting started

Read from a Sentinel-2 image a fixed size subimage on an specific lon,lat location (directly from the S2 public Google Cloud bucket):

# This snippet requires:
# pip install fsspec gcsfs google-cloud-storage
import os
os.environ["GS_NO_SIGN_REQUEST"] = "YES"

from georeader.readers import S2_SAFE_reader
from georeader import read

cords_read = (-104.394, 32.026) # long, lat
crs_cords = "EPSG:4326"
s2_safe_path = S2_SAFE_reader.s2_public_bucket_path("S2B_MSIL1C_20191008T173219_N0208_R055_T13SER_20191008T204555.SAFE")
s2obj = S2_SAFE_reader.s2loader(s2_safe_path, 
                                out_res=10, bands=["B04","B03","B02"])

# copy to local avoids http errors specially when not using a Google Cloud project.
# This will only copy the bands set up above B04, B03 and B02
s2obj = s2obj.cache_product_to_local_dir(".")

# See also read.read_from_bounds, read.read_from_polygon for different ways of croping an image
data = read.read_from_center_coords(s2obj,cords_read, shape=(2040, 4040),
                                    crs_center_coords=crs_cords)

data_memory = data.load() # this loads the data to memory

data_memory # GeoTensor object
>>  Transform: | 10.00, 0.00, 537020.00|
| 0.00,-10.00, 3553680.00|
| 0.00, 0.00, 1.00|
         Shape: (3, 2040, 4040)
         Resolution: (10.0, 10.0)
         Bounds: (537020.0, 3533280.0, 577420.0, 3553680.0)
         CRS: EPSG:32613
         fill_value_default: 0

In the .values attribute we have the plain numpy array that we can plot with show:

from rasterio.plot import show
show(data_memory.values/3500, transform=data_memory.transform)
awesome georeader

Saving the GeoTensor as a COG GeoTIFF:

from georeader.save import save_cog

# Supports writing in bucket location (e.g. gs://bucket-name/s2_crop.tif)
save_cog(data_memory, "s2_crop.tif", descriptions=s2obj.bands)

Tutorials

Sentinel-2:

Other:

Used in other projects:

Citation

If you find this code useful please cite:

@article{portales-julia_global_2023,
	title = {Global flood extent segmentation in optical satellite images},
	volume = {13},
	issn = {2045-2322},
	doi = {10.1038/s41598-023-47595-7},
	number = {1},
	urldate = {2023-11-30},
	journal = {Scientific Reports},
	author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
	month = nov,
	year = {2023},
	pages = {20316},
}
@article{ruzicka_starcop_2023,
	title = {Semantic segmentation of methane plumes with hyperspectral machine learning models},
	volume = {13},
	issn = {2045-2322},
	url = {https://www.nature.com/articles/s41598-023-44918-6},
	doi = {10.1038/s41598-023-44918-6},
	number = {1},
	journal = {Scientific Reports},
	author = {Růžička, Vít and Mateo-Garcia, Gonzalo and Gómez-Chova, Luis and Vaughan, Anna, and Guanter, Luis and Markham, Andrew},
	month = nov,
	year = {2023},
	pages = {19999},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

georeader-spaceml-1.2.tar.gz (151.7 kB view details)

Uploaded Source

Built Distribution

georeader_spaceml-1.2-py3-none-any.whl (158.7 kB view details)

Uploaded Python 3

File details

Details for the file georeader-spaceml-1.2.tar.gz.

File metadata

  • Download URL: georeader-spaceml-1.2.tar.gz
  • Upload date:
  • Size: 151.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for georeader-spaceml-1.2.tar.gz
Algorithm Hash digest
SHA256 636ad77945de0fd85afb2101e5b41345ac09ecafa0973c9d3953875fa422457e
MD5 032525f6527cbd5f5bf1a5d2b716f2e8
BLAKE2b-256 d0a942d37f41196751130a38fd72979f92e277c3d5c11c242133251ccd6b657f

See more details on using hashes here.

Provenance

File details

Details for the file georeader_spaceml-1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for georeader_spaceml-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 18b491e15751848a53aeef03045d4c3f90054deb049c3f7d69721662820dce80
MD5 5ee67c50e9bedf88bba64a90a56d3b32
BLAKE2b-256 0f9bcbc26680c6961d19323db08ae96e9607d1fe414a02b8397c0de1a0e74b64

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page