Skip to main content

🛰️ Process raster data in python

Project description

Article DOI:10.1038/s41598-023-47595-7 GitHub release (latest SemVer including pre-releases) PyPI PyPI - Python Version PyPI - License docs

Logo georeader

georeader is a package to process raster data from different satellite missions. georeader makes easy to read specific areas of your image, to reproject images from different satellites to a common grid (georeader.read), to go from vector to raster formats (georeader.vectorize and georeader.rasterize) or to do radiance to reflectance conversions (georeader.reflectance).

georeader is mainly used to process satellite data for scientific usage, to create ML-ready datasets and to implement end-to-end operational inference pipelines (e.g. the Kherson Dam Break floodmap).

Install

The core package dependencies are numpy, rasterio, shapely and geopandas.

pip install georeader-spaceml

Getting started

Read from a Sentinel-2 image a fixed size subimage on an specific lon,lat location (directly from the S2 public Google Cloud bucket):

# This snippet requires:
# pip install fsspec gcsfs google-cloud-storage
import os
os.environ["GS_NO_SIGN_REQUEST"] = "YES"

from georeader.readers import S2_SAFE_reader
from georeader import read

cords_read = (-104.394, 32.026) # long, lat
crs_cords = "EPSG:4326"
s2_safe_path = S2_SAFE_reader.s2_public_bucket_path("S2B_MSIL1C_20191008T173219_N0208_R055_T13SER_20191008T204555.SAFE")
s2obj = S2_SAFE_reader.s2loader(s2_safe_path, 
                                out_res=10, bands=["B04","B03","B02"])

# copy to local avoids http errors specially when not using a Google Cloud project.
# This will only copy the bands set up above B04, B03 and B02
s2obj = s2obj.cache_product_to_local_dir(".")

# See also read.read_from_bounds, read.read_from_polygon for different ways of croping an image
data = read.read_from_center_coords(s2obj,cords_read, shape=(2040, 4040),
                                    crs_center_coords=crs_cords)

data_memory = data.load() # this loads the data to memory

data_memory # GeoTensor object
>>  Transform: | 10.00, 0.00, 537020.00|
| 0.00,-10.00, 3553680.00|
| 0.00, 0.00, 1.00|
         Shape: (3, 2040, 4040)
         Resolution: (10.0, 10.0)
         Bounds: (537020.0, 3533280.0, 577420.0, 3553680.0)
         CRS: EPSG:32613
         fill_value_default: 0

In the .values attribute we have the plain numpy array that we can plot with show:

from rasterio.plot import show
show(data_memory.values/3500, transform=data_memory.transform)
awesome georeader

Saving the GeoTensor as a COG GeoTIFF:

from georeader.save import save_cog

# Supports writing in bucket location (e.g. gs://bucket-name/s2_crop.tif)
save_cog(data_memory, "s2_crop.tif", descriptions=s2obj.bands)

Tutorials

Sentinel-2

Read rasters from different satellites

Used in other projects

Citation

If you find this code useful please cite:

@article{portales-julia_global_2023,
	title = {Global flood extent segmentation in optical satellite images},
	volume = {13},
	issn = {2045-2322},
	doi = {10.1038/s41598-023-47595-7},
	number = {1},
	urldate = {2023-11-30},
	journal = {Scientific Reports},
	author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
	month = nov,
	year = {2023},
	pages = {20316},
}
@article{ruzicka_starcop_2023,
	title = {Semantic segmentation of methane plumes with hyperspectral machine learning models},
	volume = {13},
	issn = {2045-2322},
	url = {https://www.nature.com/articles/s41598-023-44918-6},
	doi = {10.1038/s41598-023-44918-6},
	number = {1},
	journal = {Scientific Reports},
	author = {Růžička, Vít and Mateo-Garcia, Gonzalo and Gómez-Chova, Luis and Vaughan, Anna, and Guanter, Luis and Markham, Andrew},
	month = nov,
	year = {2023},
	pages = {19999},
}

Acknowledgments

This research has been supported by the DEEPCLOUD project (PID2019-109026RB-I00) funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and the European Union (NextGenerationEU).

DEEPCLOUD project (PID2019-109026RB-I00, University of Valencia) funded by MCIN/AEI/10.13039/501100011033.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

georeader_spaceml-1.3.10.tar.gz (153.7 kB view details)

Uploaded Source

Built Distribution

georeader_spaceml-1.3.10-py3-none-any.whl (164.7 kB view details)

Uploaded Python 3

File details

Details for the file georeader_spaceml-1.3.10.tar.gz.

File metadata

  • Download URL: georeader_spaceml-1.3.10.tar.gz
  • Upload date:
  • Size: 153.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.10.10 Linux/5.15.0-58-generic

File hashes

Hashes for georeader_spaceml-1.3.10.tar.gz
Algorithm Hash digest
SHA256 a566e8fd73f8ad714ddeb7efa2657231fc2b974e4133811650eb5f6895c9e6f4
MD5 0363e553f9e27d24a879770dc98f0bf5
BLAKE2b-256 3515209f1748b6b1c6eeb4f15a56fd5cfbdd7221a51c38c3d4784f7780c16abc

See more details on using hashes here.

File details

Details for the file georeader_spaceml-1.3.10-py3-none-any.whl.

File metadata

  • Download URL: georeader_spaceml-1.3.10-py3-none-any.whl
  • Upload date:
  • Size: 164.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.10.10 Linux/5.15.0-58-generic

File hashes

Hashes for georeader_spaceml-1.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 51c6142efad0eb9b913f7106dd8bb2baa20ad70aa434b91e648809abaf4ac042
MD5 b2b15950f589372b3afc5da8914ba212
BLAKE2b-256 f5ba8cf142a79f62372abb5a216fc42da38da46c687ccbe02f838aa9cbe9ad67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page