Skip to main content

A lightweight implementation of shapes drawn across a geo-temporal plane.

Project description

Geostructures

Unit Tests

A lightweight implementation of shapes drawn across a geo-temporal plane. Geostructures enables you to quickly draw shapes, convert to/from a variety of other geometric formats, and draw results.

plotting

Installation

Geostructures is available on PYPI

$ pip install geostructures

Optional Dependencies

Geostructures does not require any of the below dependencies to function, however maintains optional features that use:

  • geopandas
  • H3
  • MGRS
  • scipy
  • shapely

Overview

Geostructures provides a python interface for functionally defining various shapes drawn on a map. Unlike other libraries such as Shapely, these shapes retain their mathematical definitions rather than being simplified into N-sided polygons.

The shapes currently supported are:

  • Boxes
  • Circles
  • Ellipses
  • LineStrings
  • Points
  • Polygons
  • Rings/Wedges

All shapes may optionally be temporally-bound using a specific datetime or a datetime interval.

Additionally, geostructures provides convenience objects for representing chronologically-ordered (Track) and unordered (FeatureCollection) collections of the above shapes.

Quick Start

For an interactive introduction, please review our collection of Jupyter notebooks.

Creating GeoShapes

from geostructures import *

box = GeoBox(
    Coordinate(-0.154092, 51.539865),   # Northwest corner
    Coordinate(-0.140592, 51.505665),   # Southeast corner
    properties={"name": "box"}
)

circle = GeoCircle(
    Coordinate(-0.131092, 51.509865),   # centerpoint
    radius=500, 
    properties={"name": "circle"}
)

ellipse = GeoEllipse(
    Coordinate(-0.093092, 51.529865),   # centerpoint
    major_axis=1_000,                   # The distance between the centerpoint and the furthest point along the circumference
    minor_axis=250,                     # The distance between the centerpoint and the closest point along the circumference
    rotation=45,                        # The angle of rotation (between 0 and 360)
    properties={"name": "ellipse"}
)

ring = GeoRing(
    Coordinate(-0.116092, 51.519865),   # centerpoint
    inner_radius=800,
    outer_radius=1000,
    properties={"name": "ring"}
)

# Same as a ring, but with a min/max angle
wedge = GeoRing(
    Coordinate(-0.101092, 51.514865),   # centerpoint
    inner_radius=300,
    outer_radius=500,
    angle_min=60,                       # The minimum angle of the wedge
    angle_max=190,                      # The maximum angle of the wedge
    properties={"name": "wedge"}
)

linestring = GeoLineString(
    [
        Coordinate(-0.123092, 51.515865), Coordinate(-0.118092, 51.514665), Coordinate(-0.116092, 51.514865),
        Coordinate(-0.116092, 51.518865), Coordinate(-0.108092, 51.512865)
    ],
    properties={"name": "linestring"}
)

point = GeoPoint(
    Coordinate(-0.116092, 51.519865), 
    properties={"name": "point"}
)

polygon = GeoPolygon(
    [
        Coordinate(-0.116092, 51.509865), Coordinate(-0.111092, 51.509865), 
        Coordinate(-0.113092, 51.506865), Coordinate(-0.116092, 51.509865)  # Note that the last coordinate is the same as the first
    ],
    properties={"name": "polygon"}
)

Converting Between Formats

from geostructures import *
from geostructures.collections import FeatureCollection

polygon = GeoPolygon(
    [
        Coordinate(-0.116092, 51.509865), Coordinate(-0.111092, 51.509865), 
        Coordinate(-0.113092, 51.506865), Coordinate(-0.116092, 51.509865)
    ]
)

# Convert to and from a variety of formats
polygon.to_geojson()
polygon.from_geojson( { a geojson object } )

polygon.to_wkt()
polygon.from_wkt( '<a wkt polygon string>' )

polygon.to_shapely()
polygon.from_shapely( a shapely polygon )

# Collections of shapes have additional supported formats
collection = FeatureCollection([polygon])

# Creates a geopandas DataFrame
collection.to_geopandas()
collection.from_geopandas( a geopandas DataFrame )

# Creates a GeoJSON FeatureCollection
collection.to_geojson()
collection.from_geojson( { a geojson object } )

# Write a FeatureCollection to an ESRI Shapefile
from zipfile import ZipFile
with ZipFile('shapefile_name.zip', 'w') as zfile:
    collection.to_shapefile(zfile)

collection.from_shapefile('shapefile_name.zip')

Plotting Shapes

from geostructures import *
from geostructures.collections import FeatureCollection
from geostructures.visualization.plotly import draw_collection

box = GeoBox(Coordinate(-0.154092, 51.539865), Coordinate(-0.140592, 51.505665))
circle = GeoCircle(Coordinate(-0.131092, 51.509865), radius=500)
collection = FeatureCollection([box, circle])

# Display the results
fig = draw_collection(collection)
fig

Bounding Shapes by Time

from datetime import datetime
from geostructures import *
from geostructures.collections import Track
from geostructures.time import TimeInterval

track = Track([
    # Bound shapes to a specific point in time
    GeoPoint(Coordinate(-0.154092, 51.539865), dt=datetime(2020, 5, 1, 12)),
    GeoPoint(Coordinate(-0.155092, 51.540865), dt=datetime(2020, 5, 1, 13)),
    
    # Or bound them to a span of time
    GeoPoint(
        Coordinate(-0.156092, 51.541865), 
        dt=TimeInterval(
            datetime(2020, 5, 1, 14),
            datetime(2020, 5, 1, 15)
        )
    ),
])

# Slice by datetime
subset = track[datetime(2020, 5, 1, 12):datetime(2020, 5, 1, 13)]

# Get efficient metrics between shapes
track.centroid_distances    # meters
track.speed_diffs           # meters per second
track.time_start_diffs      # timedeltas

Geohashing

Geostructures supports geohashing using both Uber's H3 and the original Niemeyer geohashing algorithm.

from geostructures import *
from geostructures.collections import FeatureCollection
from geostructures.geohash import H3Hasher, NiemeyerHasher
from geostructures.visualization.plotly import h3_choropleth

box = GeoBox(Coordinate(-0.154092, 51.539865), Coordinate(-0.140592, 51.505665))
circle = GeoCircle(Coordinate(-0.131092, 51.509865), radius=500)
collection = FeatureCollection([box, circle])

# Create a hasher
hasher = H3Hasher(resolution=10)
hashmap = hasher.hash_collection(collection)

# Display the results
h3_choropleth(hashmap)

# Alternatively, hash using the Niemeyer algorithm
hasher = NiemeyerHasher(length=8, base=16)
hashmap = hasher.hash_collection(collection)

Projections

This library assumes that all geospatial terms and structures conform to the WGS84 standard (CRS 4326).

Reporting Issues / Requesting Features

The Geostructures team uses Github issues to track development goals. Please include as much detail as possible so we can effectively triage your request.

Contributing

We welcome all contributors! Please review CONTRIBUTING.md for more information.

Developers

Carl Best (Sr. Data Scientist/Project Owner)
https://github.com/ccbest/

Eli Talbert (Sr. Data Scientist/PhD)
https://github.com/etalbert102

Jessica Moore (Sr. Data Scientist)
https://github.com/jessica-writes-code

Richard Marshall (Data Scientist/SME)
https://github.com/RichardMarshall13

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geostructures-0.10.0.tar.gz (62.5 kB view details)

Uploaded Source

Built Distribution

geostructures-0.10.0-py3-none-any.whl (49.5 kB view details)

Uploaded Python 3

File details

Details for the file geostructures-0.10.0.tar.gz.

File metadata

  • Download URL: geostructures-0.10.0.tar.gz
  • Upload date:
  • Size: 62.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for geostructures-0.10.0.tar.gz
Algorithm Hash digest
SHA256 71c39b94a5e34fe489c228f539f6f8c0c844e7e91d013b20f9089b71c1ff2ce1
MD5 fcebf75781ceb0e3350adc3450136600
BLAKE2b-256 155013e3fbc367dbe79c14c6ab127858eb41f353394c810b6698998b572fd745

See more details on using hashes here.

Provenance

File details

Details for the file geostructures-0.10.0-py3-none-any.whl.

File metadata

File hashes

Hashes for geostructures-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 77d13d053f6db0d8a08fcd3574901790fb28f676a4e4213211c53fc2c9599cd3
MD5 347e47ac46dbb14fe2e41f31fe68da68
BLAKE2b-256 984f43c6554ab551ccc270a9fcb6dd04674c76e233f531350e2277477df422b9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page