Skip to main content

Reasearch project on clustering clients from transaction history

Project description

Name of the module stands for geographical transactions clustering. This module is an implementation of the method, developed for the third course project in HSE University. It takes dataframe with clients transactions history of the specified format and returns list of clusters.

For the record, it was intended to be for public usage in this form, as it is a research project seeking to find a way to deal with the described problem


Run the following to install:


pip install geot_cluster’’’


Before using make sure, that your dataset corresponds with requirements. Csv file must contain the following columns in order to work correctly

  • user_id : string type, example: “423156821”

  • event_dt : string type, example: “20190312”

  • event_time: string type, example: “2019-03-12 06:24:00.279”

  • lattitude : float type, example: 49.862621

  • longtitude: see lattitude


import geot_cluster

import markov_clustering as mc
import matplotlib.pyplot as plt
import networkx as nx

path = [path to file with data]
data, names = geot_cluster.data_load(path)

%matplotlib notebook
base = [path to the folder, where to store libs with information about clients]

archivate = True
libs= True
graph_f = True
cluster_f = True

    geot_cluster.archivate_maps(data, names, levels=4)

    lib = geot_cluster.graph_preparation(data, names, base)
    prob_lib = geot_cluster.znakomstvo_by_lib(lib,data)

lib, prob_lib = load_libs(base = base)

    graph = geot_cluster.graph_forming(lib, prob_lib, treshold=0.9)

    result = mc.run_mcl(graph,pruning_threshold=0.7, inflation=2,expansion=2)
    clusters = mc.get_clusters(result)

    clust_0 = clusters_to_ids(lib=lib, prob_lib=prob_lib, clusters = clusters, number = 0)
    maps = get_cluster_maps(data = data, clust = clust_0)
    print("Number of clusters", len(clusters))

    mc.drawing.draw_graph(result, clusters, edge_color="red",node_size=15,width = 1, with_labels=True, font_size = 8)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geot_cluster-0.9.29.tar.gz (12.8 kB view hashes)

Uploaded source

Built Distribution

geot_cluster-0.9.29-py3-none-any.whl (15.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page