Skip to main content

A Library to convert Unsupervised Clustering Results into Geographical Maps

Project description

GitHub release (latest by date) PyPI PyPI - Downloads

Geographic Decision Zones (GeoZ)

GeoZ is a Python library integrating several machine learning modules to create Geographic Maps based on the output of Unsupervised Machine Learning techniques. The library is geared mainly toward delineating the output from Clustering algorithms, but it can be used for other Machine Learning algorithms. GeoZ is distributed under the 3-Clause BSD license.

Installation

To install GeoZ using pip:

pip install geoz

Usage Details

The library is still in its inital stage. As such, the user will have to provide the data in a certain format as the library is working with a fixed structure and wont fix or tolerate any deviation from the expected format.

Dataset shape and format Example

The data provided needs to have two variables, one containing the latitude and longitude (eg. latlong) and another variable that contains the predicted classes of the the points (eg. y_pred). please check the below table for illustration:

LATITUDE LONGITUDE y_pred
30 -104 2
32 -103 1
35 -105 2
33 -104 2
35 -102 3

Please make sure to write (LATITDE, LONGITUDE) in CAPITAL LETTER, otherwise the algorithm will fail.

Code Example

In this example, we import geoz and then use an already defined variable 'dataset' that contains our above table, the variable can contain the latitude, longitude and the y_pred, but it can also contain only the latitude and longitude without the class. in that case you will need to provide another variable (eg. y_pred) to store the class predictions and use it in the functions calling.

import geoz

dataset=dataset                           # This is supposed to be the dataset that you have, it must contain the Latitude and the longitude as well as the class information

map1 = geoz.convex_hull_plot(dataset[['LATITDE','LONGITUDE']], dataset[['y_pred']])            # This Function will return a Convex Hull map of the classes

map2 = geoz.sklearn_plot(dataset[['LATITDE','LONGITUDE']], dataset[['y_pred']])                # This Function will return a map drawn using Scikit-Learn "DecisionBoundaryDisplay"

map3 = geoz.mlx_plot(dataset[['LATITDE','LONGITUDE']], dataset[['y_pred']])                    # This Function will return a map drawn using MLextend  "decision_regions"

For further infromation or the functions other parameters, please check the functions DocStrings as they contain more details and information.

License information

See the file (LICENSE) for information on the terms & conditions for usage, and a DISCLAIMER OF ALL WARRANTIES.

Contact

You can ask me any questions via my Twitter Account Ne-oL. and in case you encountered any bugs, please create an issue in GitHub's issue tracker and I will try my best to address it as soon as possible.

Citation

Publication is under Process if you use this library in the mean time, please cite the Github repositry

Created By Khalid ElHaj, PhD Fellow

Geosciences Department @ UAE University

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geoz-1.5.2.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

geoz-1.5.2-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file geoz-1.5.2.tar.gz.

File metadata

  • Download URL: geoz-1.5.2.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for geoz-1.5.2.tar.gz
Algorithm Hash digest
SHA256 ff45b706260be78b010ddcf1ae5ba131f12d24f5ea07bf64c6c8b3670d89671a
MD5 3edc1098ba75d0c7509c0153be0b7eff
BLAKE2b-256 56d597e4fc4b019eb63e9e2838cdc9f19c3b821c7caf449a128c872211aabf29

See more details on using hashes here.

File details

Details for the file geoz-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: geoz-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for geoz-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4d980440124484e7ee19e8f1e02325010c452b093d9155ea976d41a3f5ce08bb
MD5 43104aef27046be8938ae0455a6eb422
BLAKE2b-256 cc9bbf91f0bd74f869b8335e54958d28e13d5369df66f980c40bff8e2f689958

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page