An extractor to extract list, title, content, date, etc info without XPath or Selector
Project description
Gerapy Auto Extractor
This is the Auto Extractor Module for Gerapy, You can also use it separately.
You can use this package to distinguish between list page and detail page, and we can use it to extract
url
from list page and also extract title
, datetime
, content
from detail page without any XPath or Selector.
It works better for Chinese News Website than other scenarios.
Introduction: Introduction
Installation
You can use this command to install this package:
pip3 install gerapy-auto-extractor
Usage
Below are the methods this package implemented:
Extraction of List Page
For list page, you can use extract_list
method to extract the main list urls and their titles.
Extraction of Detail Page
For detail page, you can use extract_title
method to extract title, use extract_content
method to extract content,
use extract_datetime
method to extract datetime.
Also you can use extract_detail
method to extract all above attrs, results are joined as a json.
Classification of List/Detail Page
You can use is_list
or is_detail
method to distinguish if this page is list page or detail page, the type of returned result is bool
.
Also you can use probability_of_list
or probability_of_detail
method to get the probability of the classification of this page, the type of returned result is float
.
Usage example:
from gerapy_auto_extractor import extract_list, extract_detail, is_detail, is_list, probability_of_detail, probability_of_list
from gerapy_auto_extractor.helpers import content, jsonify
html = content('samples/list/sample.html')
print(jsonify(extract_list(html)))
html = content('samples/detail/sample.html')
print(jsonify(extract_detail(html)))
html = content('samples/detail/sample.html')
print(probability_of_detail(html), probability_of_list(html))
print(is_detail(html), is_list(html))
html = content('samples/list/sample.html')
print(probability_of_detail(html), probability_of_list(html))
print(is_detail(html), is_list(html), )
HTML files can be found in samples.
Below are outputs:
[
{
"title": "山东通报\"苟晶事件\":15人被处理部分事实有反转",
"url": "http://news.163.com/20/0703/13/FGK7NCOR0001899O.html"
},
{
"title": "胡锡进:香港这仗就是要让华盛顿明白,它管多了",
"url": "https://news.163.com/20/0702/19/FGI8IUEP0001899O.html"
},
{
"title": "山东一校长为儿子伪造档案11岁开始领国家工资",
"url": "https://news.163.com/20/0702/21/FGIENBGS0001899O.html"
},
{
"title": "大理西洱河又现\"鱼腾\"奇景市民沿岸围观有人徒手抓",
"url": "https://news.163.com/20/0704/03/FGLOFC3P0001875P.html"
},
{
"title": "陈国基被任命为香港特别行政区国安委秘书长",
"url": "https://news.163.com/20/0702/12/FGHFAVS200018AOQ.html"
},
{
"title": "孙力军等6名中管干部被查上半年反腐数据说明啥?",
"url": "https://news.163.com/20/0703/00/FGIPQ11D0001899O.html"
},
{
"title": "香港特区政府严厉谴责暴徒恶行全力支持警队严正执法",
"url": "https://news.163.com/20/0702/09/FGH801750001899O.html"
}
]
{
"title": "美国新冠肺炎确诊病例超278万例 死亡129227例",
"datetime": "2020-07-04 01:55:04+08:00",
"content": "(原标题:美国新冠肺炎确诊病例超过278万例)\n根据约翰斯·霍普金斯大学的最新数据统计,截至美东时间7月3日16时33分,美国新冠肺炎确诊病例超过278万例,为2780916例,死亡病例为129227例。新增确诊病例数较当日9时33分公布的数据增长了40563例。\n目前,美国至少有19个州已经下令要求民众在公共场合佩戴口罩。佛罗里达州坦帕市市长简·卡斯特在7月3日接受电视采访时表示,“在美国的任何地方都没有反对戴口罩的好理由”。卡斯特已经下令要求该市民众必须在公众场合佩戴口罩,并认为没有理由反对在全州范围颁发“口罩强制令”,但她表示最好的方式“是各市与县政府自行发出命令。”除该市外,佛罗里达州的迈阿密,杰克逊维尔和棕榈滩县也开始要求民众在公共场所戴口罩。\n截至目前,佛罗里达有接近17万人确诊新冠肺炎,日增新确诊病例数于7月2日突破1万例,今日统计再新增9488例。\n【世卫:即使20%的人拥有抗体 新冠病毒还能有效传播】\n当地时间7月3日,世卫组织召开新冠肺炎发布会,世卫组织卫生紧急项目负责人迈克尔·瑞安表示,人群中出现任何程度的抗体都会提供一定的屏障,因为一旦有人得到保护,病毒就会更难传播,但要想达到防火墙一般的效果,就需要比例较高的人群呈抗体阳性。即使20%的人拥有抗体,病毒还是能够有效传播,同时还要考虑抗体所能提供的保护时长。\n详情>>\n【美国西雅图一大学宿舍区超100名学生感染新冠肺炎】\n当地时间7月3日,据当地媒体报道,西雅图华盛顿大学的宿舍区中暴发新冠肺炎疫情,其中至少105名学生被确诊为新冠肺炎患者。校方表示,目前至少有800名学生进行了新冠病毒检测,其中至少62名确诊学生同属一个社团,目前学校已被通知停止学生一切聚会活动。\n【白宫“不顾疫情”大搞独立日庆典 预计7500人参加】\n华盛顿特区的活动只是特朗普为独立日举办的盛大庆典的第二出。当地时间3日,特朗普将前往位于南达科他州的拉什莫尔山国家纪念公园,在著名的“总统山”下发表演讲,届时还将举行烟花表演。据法新社报道,这场活动预计吸引7500人参加,然而戴口罩、保持社交距离等防疫措施依然是靠民众自觉。\n详情>>\n【美国至少37州疫情反弹 至少19州发布\"口罩强制令\"】\n截至目前,全美至少37个州出现疫情反弹,其中加利福尼亚、亚利桑那、德克萨斯,以及佛罗里达州本周确诊病例数均高于此前日增记录,另有蒙大拿、爱达荷、内华达、佛罗里达、佐治亚、田纳西、路易斯安那、阿拉斯加,以及特拉华州新增病例数超过50%。\n详情>>\n【非洲地区新冠肺炎确诊病例快速增长至43.3万】\n截至非洲东部时间7月3日,非洲疾控中心数据显示:非洲地区54个国家报告了新冠肺炎确诊病例433500例,死亡10658例,208400人康复。\n尽管非洲确诊病例数仍在持续增加,但尼日利亚、塞拉利昂等国已决定恢复通航。\n尼日利亚表示,各大机场将于近期陆续恢复国内航班的运营,其中首都阿布贾和经济中心拉各斯的机场将于8日率先开放,其他城市机场将于11日起陆续开放。国际航班的恢复日期将在适当时候宣布。\n【巴西卫生部:新冠肺炎感染人数或已超过1050万】\n巴西卫生部针对巴西全国的一项调查显示,巴西新冠肺炎实际感染人数可能已超过1050万,是目前巴西公布的已确诊新冠肺炎病毒感染人数的7倍以上。\n这项调查是由巴西卫生部与佩洛塔斯联邦大学联合进行的。这一调查结果2日发表在巴西联邦政府的报告中。这项调查分三个阶段,通过对巴西133定点人口分布最多的城市进行抽样调查,估算出具有新冠病毒抗体的人群比例,并分析巴西全国感染人群的演变。\n巴西联邦政府希望通过这个研究,帮助地方政府制定相应的经济活动开放或限制措施。"
}
0.9990605314033392 0.0009394685966607814
True False
0.033477426883441685 0.9665225731165583
False True
Just for Beta.
Needs more effort to improve.
Reference
Paper
Project
Citing
If you use Gerapy Auto Extractor in your research or project, please add a reference using the following BibTeX entry.
@misc{cui2020gerapy,
author = {Qingcai Cui},
title = {Gerapy Auto Extractor},
howpublished = {\url{https://github.com/Gerapy/GerapyAutoExtractor}},
year = {2020}
}
Changelog
See Changelog
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gerapy-auto-extractor-0.2.1.tar.gz
.
File metadata
- Download URL: gerapy-auto-extractor-0.2.1.tar.gz
- Upload date:
- Size: 41.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8a4d81b29079e29dfb023088cd16e23f3064dcc53e4b4b6340f96a31807c93c |
|
MD5 | 6d50a9855eb991129e51065b800c6284 |
|
BLAKE2b-256 | 20fa261d9cbfb8764eda8c084706e127691bb83847146d24649ab8e2dff83328 |
File details
Details for the file gerapy_auto_extractor-0.2.1-py2.py3-none-any.whl
.
File metadata
- Download URL: gerapy_auto_extractor-0.2.1-py2.py3-none-any.whl
- Upload date:
- Size: 41.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33b510fffc807461676e7ef948624c82229e32123f9efe2ea790794e31013a38 |
|
MD5 | 3c14239af965c5751eb45575c9d36c1d |
|
BLAKE2b-256 | 23399f5f41746c07deceea48372769ff279792c0b6d87db8a471fed96aa84624 |