Skip to main content

Extracts faces from an image using different backend detectors and save the results in a DataFrame.

Project description

Extracts faces from an image using different backend detectors and save the results in a DataFrame.

pip install gesichtfinder

Tested against Windows 10 / Python 3.10 / Anaconda

    This function utilizes the deepface library for face detection, allowing you to choose from various backend detectors
    for detecting faces in an image. The detected face regions can be optionally cropped and stored in the DataFrame.

    Parameters:
        img (str or ndarray): The path to the input image or the image's numpy array representation (RGB format).
        cut_out_faces (bool, optional): If True, the detected face regions will be cropped and stored in the DataFrame.
                                        If False, only face coordinates and attributes will be included. Default is True.
        backends (tuple, optional): A tuple containing the names of the backend detectors to use for face detection.
                                    Available backends include 'opencv' and 'retinaface'.
                                    Default is ('opencv', 'retinaface').
        **kwargs: Additional keyword arguments to be passed to the deepface.extract_faces function.
                  You can specify options like min_face_size, model, enforce_detection, and more.

    Returns:
        pandas.DataFrame: A DataFrame containing details of the detected faces and their attributes, including:
            - 'x': X-coordinate of the top-left corner of the detected face bounding box.
            - 'y': Y-coordinate of the top-left corner of the detected face bounding box.
            - 'w': Width of the detected face bounding box.
            - 'h': Height of the detected face bounding box.
            - 'end_x': X-coordinate of the bottom-right corner of the detected face bounding box.
            - 'end_y': Y-coordinate of the bottom-right corner of the detected face bounding box.
            - 'confidence': Confidence score of the face detection.
            - 'backend': The backend detector used for the detection.
            - 'faces' (optional): Cropped face regions if 'cut_out_faces' is True.

    Example:
        # Import the required libraries
        # Example usage:
        from gesichtfinder import get_faces
        df = get_faces(img=r"c:\asy.jpg", cut_out_faces=True, backends=('opencv', 'retinaface'))
        print(df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gesichtfinder-0.10.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

gesichtfinder-0.10-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file gesichtfinder-0.10.tar.gz.

File metadata

  • Download URL: gesichtfinder-0.10.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gesichtfinder-0.10.tar.gz
Algorithm Hash digest
SHA256 483a450edb7d50863e0b56b456ec1659ea4dd49a7c2922a77e3b901617f38cd5
MD5 9726d7252a4f5b777fc1e8586cf631b5
BLAKE2b-256 a40490ac108fb090e539fcba33e00c565e38b517bfef0ad631bb2d2d83905014

See more details on using hashes here.

File details

Details for the file gesichtfinder-0.10-py3-none-any.whl.

File metadata

  • Download URL: gesichtfinder-0.10-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gesichtfinder-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 4c202e92d22a1a8f0cba7f67f48720217e9c30d58b187f00c3617d4b2a15185d
MD5 6eec4f66d364d41bf57a314a1ad8ee01
BLAKE2b-256 d89ac36dfba1a96325e2aef01e27c79cdde97731aabfdeaeaeb5827f071de012

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page