Skip to main content

Gesund.ai package for running validation metrics for classification, semantic segmentation, instance segmentation, and object detection models.

Project description

Validation Metrics Library

Overview

This library provides tools for calculating validation metrics for predictions and annotations in machine learning workflows. It includes a command-line tool for computing and displaying validation metrics.

Installation

To use this library, ensure you have the necessary dependencies installed in your environment. You can install them via pip:

pip install .

Usage

Command-Line Tool

The primary script for running validation metrics is run_metrics.py. This script calculates validation metrics based on JSON files containing predictions and annotations.

Arguments

  • annotations (required): Path to the JSON file containing annotation data.
  • predictions (required): Path to the JSON file containing prediction data.
  • class_mappings (required): Path to the JSON file containing class_mappings data.
  • problem_type (required): Problem type that Validation is being run for .e.g. classification, semantic_segmentation, instance_segmentation, object_detection

Example

Basic Usage:

run_metrics --annotations test_data/gesund_custom_format/gesund_custom_format_annotations_classification.json --predictions test_data/gesund_custom_format/gesund_custom_format_predictions_classification.json --class_mappings test_data/test_class_mappings.json --problem_type classification --format gesund_custom_format

Example JSON Inputs

The library supports annotations and predictions in the following formats:

  • COCO
  • YOLO
  • Gesund Custom Format

The format for Gesund Custom Format is shown below under Example JSON Inputs.

  • Annotations (test_data/gesund_custom_format/gesund_custom_format_annotations_classification.json):

    {
    "664df1bf782d9eb107789013": {
      "image_id": "664df1bf782d9eb107789013",
      "annotation": [
        {
          "id": "664dfb2085d8059c72b7b24a",
          "label": 0
        }
      ]
    },
    
    "664df1bf782d9eb107789015": {
      "image_id": "664df1bf782d9eb107789015",
      "annotation": [
        {
          "id": "664dfb2085d8059c72b7b24d",
          "label": 1
        }
      ]
    },
    ...
    }
    
  • Predictions (test_data/gesund_custom_format/gesund_custom_format_predictions_classification.json):

    {
    "664df1bf782d9eb107789013": {
      "image_id": "664df1bf782d9eb107789013",
      "prediction_class": 1,
      "confidence": 0.731047693767988,
      "logits": [
        0.2689523062320121,
        0.731047693767988
      ],
      "loss": 16.11764907836914
    },
    
    "664df1bf782d9eb107789015": {
      "image_id": "664df1bf782d9eb107789015",
      "prediction_class": 1,
      "confidence": 0.7308736572776326,
      "logits": [
        0.26912634272236735,
        0.7308736572776326
      ],
      "loss": 0.007578411139547825
    },
    ...
    }
    
  • Class Mappings (test_data/test_class_mappings.json):

    {"0": "normal", "1": "pneumonia"}
    

Example Outputs

Console Output

Only the Highlighted Overall Metrics are printed to the console. The output on the consol should look like so:

Validation Metrics:
----------------------------------------
Accuracy:
    Validation: 0.4375
    Confidence_Interval: 0.2656 to 0.6094
----------------------------------------
Micro F1:
    Validation: 0.4375
    Confidence_Interval: 0.2656 to 0.6094
----------------------------------------
Macro F1:
    Validation: 0.4000
    Confidence_Interval: 0.2303 to 0.5697
----------------------------------------
AUC:
    Validation: 0.3996
    Confidence_Interval: 0.2299 to 0.5693
----------------------------------------
Precision:
    Validation: 0.4343
    Confidence_Interval: 0.2625 to 0.6060
----------------------------------------
Sensitivity:
    Validation: 0.4549
    Confidence_Interval: 0.2824 to 0.6274
----------------------------------------
Specificity:
    Validation: 0.4549
    Confidence_Interval: 0.2824 to 0.6274
----------------------------------------
Matthews C C:
    Validation: -0.1089
    Confidence_Interval: 0.0010 to 0.2168
----------------------------------------
----------------------------------------
All Graphs and Plots Metrics saved in JSONs.
----------------------------------------

Output JSON Files

All output JSON files for all graphs and plots will be present in the outputs dir, under the randomly assigned {batch_job_id} dir.

COCO Format

It is to be noted that COCO format is traditionally used for object detection, instance segmentation, and keypoint detection, but it is not designed for image classification. Therefore, we have adapted COCO-like structures for classification tasks.

Sample format can be seen below:

  • Annotations (test_data/coco/coco_annotations_classification.json):
{
    "info": {},
    "licenses": [],
    "categories": [
        {
            "id": 0,
            "name": "normal",
            "supercategory": "medical conditions"
        },
        {
            "id": 1,
            "name": "pneumonia",
            "supercategory": "medical conditions"
        }
    ],
    "images": [
        {
            "id": "664df1bf782d9eb107789013",
            "file_name": "image_1.jpg",
            "width": 240,
            "height": 240
        },
        {
            "id": "664df1bf782d9eb107789015",
            "file_name": "image_2.jpg",
            "width": 240,
            "height": 240
        },
        {
            "id": "664df1bf782d9eb107789014",
            "file_name": "image_3.jpg",
            "width": 240,
            "height": 240
        },
        ...
    ],
    "annotations": [
        {
            "id": 1,
            "image_id": "664df1bf782d9eb107789013",
            "category_id": 0,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        {
            "id": 2,
            "image_id": "664df1bf782d9eb107789015",
            "category_id": 1,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        {
            "id": 3,
            "image_id": "664df1bf782d9eb107789014",
            "category_id": 1,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        ...
    ]
  }
  • Predictions (test_data/coco_predictions_classification.json):
[
    {
        "image_id": "664df1bf782d9eb107789013",
        "category_id": 1,
        "score": 0.731047693767988,
        "loss": 16.11764907836914
      },
      {
        "image_id": "664df1bf782d9eb107789015",
        "category_id": 1,
        "score": 0.7308736572776326,
        "loss": 0.007578411139547825
      },
      {
        "image_id": "664df1bf782d9eb107789014",
        "category_id": 1,
        "score": 0.7310579660592649,
        "loss": 0.000025339495550724678
      },
      ...
      ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gesund_val_library-0.1.9.tar.gz (131.7 kB view details)

Uploaded Source

Built Distribution

gesund_val_library-0.1.9-py3-none-any.whl (189.7 kB view details)

Uploaded Python 3

File details

Details for the file gesund_val_library-0.1.9.tar.gz.

File metadata

  • Download URL: gesund_val_library-0.1.9.tar.gz
  • Upload date:
  • Size: 131.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for gesund_val_library-0.1.9.tar.gz
Algorithm Hash digest
SHA256 604b04bd6569af7c686dcbd5003af01d82dd6fb53894f1fad0e385c6712397f5
MD5 e5d9d97c3a0a7e31a3381f5b2e42b97b
BLAKE2b-256 73bff2a64fbe6e76deb044abe3df80851f8e0385c274ff3e0d0e94403cb775fd

See more details on using hashes here.

File details

Details for the file gesund_val_library-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for gesund_val_library-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 afd4e2bc85e42c8cacf0b00239809ac3fbc9b4e0dab9cc39165ac1695cbc4ed6
MD5 673b90fd86e9a09ef78fa8652fd7fb8d
BLAKE2b-256 74a5936f0ee84ebce587470004538f1116048f2931ceccde6fc9b2851512aac1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page